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Tensors

I Multidimensional array of numerical values

I General Nth order tensor T ∈ CI1×I2×···×IN

I Number of elements: O
(
IN
)

Curse of Dimensionality

The problems arising from the exponential increase in memory and
computational requirements

Example: # entries in a Nth order tensor of size
100× 100× · · · × 100 exceeds # atoms in observable universe for
N > 41
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Alleviating or breaking the curse of dimensionality

I Use decompositions
I Canonical Polyadic Decomposition
I Low Multilinear Rank Approximation (Tucker, MLSVD)
I Tensors Trains
I Hierarchical Tucker
I Tensor Networks

I Scientific computing vs signal processing/data analysis
I Use incomplete tensors

I Because we do not have the full tensor
I Because we do not want the full tensor

[Hackbusch, 2012; Grasedyck et al., 2013; Khoromskij, 2012;
Vervliet et al., 2014; Cichocki et al., 2016, 2017]
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Low Multilinear Rank Approximation

I Multilinear transform of a core tensor

T =

A(3)

A(1)
A(2)G

I Mathematically, for a general Nth order tensor T ∈ CI×···×I

T = G ·1 A(1) ·2 A(2) · · · ·N A(N) ,
r
G;A(1),A(2), . . . ,A(N)

z

I Number of variables: O
(
NIR + RN

)
I Curse not broken, but can be computed via QR/SVD
I Truncation error bound:∣∣∣∣∣∣T − T̂MLSVD, trunc

∣∣∣∣∣∣2
F
6 N min

rank�(T̂ )6(R1,R2,...,RN)

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣2
F
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Canonical polyadic decomposition

I Sum of rank-1 terms

T =

c1

a1

b1
+ · · · +

cR

aR

bR

I Mathematically, for a general Nth order tensor T ∈ CI×···×I

T =
R∑

r=1

a
(1)
r ⊗ a

(2)
r ⊗ · · · ⊗ a

(N)
r =

r
A(1),A(2), . . . ,A(N)

z

I Number of variables: O (NIR)
I Curse broken, but possibly ill-conditioned/ill-posed problem
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Tensor Trains or Matrix Product States

I Write tensor as a train of lower-order tensors [Oseledets, 2011]

A1
A2

A3 A4 A5

r1 r2 r3 r4

i1

i2

i3
i4

i5

I Mathematically, for a general Nth order tensor T ∈ CI1×···×IN

ti1i2···iN =
∑

r1,r2,...,rN−1

a
(1)
i1r1

a
(2)
r1i2r2

a
(3)
r2i3r3
· · · a(N−1)

rN−2iN−1rN−1
a

(N)
rN−1iN

I Number of variables: O
(
2IR + (N − 2)IR2

)
I Curse broken and can be computed via QR/SVD
I Truncation error bound

‖T − T̂TT, trunc‖
2
F 6 (N − 1) min

rankTT(T̂ )6(R1,R2,...,RN−1)
‖T − T̂ ‖2

F

I hTucker [Hackbusch, 2012]
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Key assumption: low rank

Matrix: decaying singular value spectrum

Power law

Exponential polynomial structure (see further)

Rank-1 terms:

T =
R∑

r=1

u
(1)
r ⊗ u

(2)
r ⊗ · · · ⊗ u

(N)
r

T[1,2,...;n+1,n+2,...] = (U(1)�U(2)� · · · ) · (U(n+1)�U(n+2)� · · · )T

−→ all matrix representations have rank 6 R
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Algorithms for large-scale tensors

Missing entries / partially sampled tensors and CPD

Randomized block sampling for CPD
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How to handle large tensors?

I Use incomplete tensors
I CPWOPT [Acar et al., 2011]
I CPDI NLS [Vervliet et al., 2014, 2016a]

I Exploit sparsity
I GigaTensor [Kang et al., 2012]
I ParCube [Papalexakis et al., 2012]

I Compress the tensor
I PARACOMP algorithm [Sidiropoulos et al., 2014]
I Tensor Trains [Oseledets and Tyrtyshnikov, 2010]

I Decompose subtensors and combine results
I ParCube [Papalexakis et al., 2012]
I Grid PARAFAC [Phan and Cichocki, 2011]

I Parallel
I ADMoM [Liavas and Sidiropoulos, 2015]
I Most of the above
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Optimization for CPD

I Optimization problem:

min
A(1),A(2),...,A(N)

1

2

∣∣∣∣∣∣W ∗ (T − r
A(1),A(2), . . . ,A(N)

z)∣∣∣∣∣∣2
F

I Algorithms
I CPWOPT [Acar et al., 2011]

Nonlinear Conjugate Gradients
I INDAFAC [Tomasi and Bro, 2005]

Gauss–Newton
I CPD/SDF [Sorber et al., 2015]

Quasi-Newton and (approximate) inexact Gauss–Newton
Tensorlab: cpd_nls, sdf_nls

I CPD(L)I [Vervliet et al., 2016a,d]

Inexact Gauss–Newton with possible linear constraints
Tensorlab: cpd_nls with UseCPDI option, cpdli_nls

I Samples investigated: Nsamples
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Algorithms for large-scale tensors

Missing entries / partially sampled tensors and CPD

Randomized block sampling for CPD
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Randomized block sampling CPD: idea

stochastic descent with step restriction

≈ + · · ·+

Take sample

Compute step

Initialization

+ · · ·+

Update

[Vervliet and De Lathauwer, 2016] 18
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Detection of hazardous gasses using e-noses

Classify 900 experiments
containing 72 time series
with 26 000 samples each,
totaling 12.5 GB of data.

[Vervliet and De Lathauwer, 2016]
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Classify hazardous gasses

Does the sample contain CO, acetaldehyde or ammonia?

S
en

so
r

Experiment
Time

Strategy: classify using coefficients of spatiotemporal patterns.

26 000× 72× 900 100× 36× 100 R = 5 Unknown
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Results

I Resulting factor matrices

experimentsensortime

I Performance after clustering

Iterations Time (s) Error (%)

No restriction 3000 60 5.0
Restriction 9000 170 0.3–0.8
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Variants and applications

Compression as preprocessing in the computation of unconstrained
and constrained decompositions

Thermodynamic data and curse of dimensionality

No tensor? Quantization and blessing of dimensionality
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Exploiting low multilinear rank for tensor decompositions

Strategy without constraints:

1 | Compress tensor, e.g, using (randomized) MLSVD [Vervliet et al.,

2016c]

2 | Compute CPD of core tensor
3 | Expand CPD using factor matrices of compression
4 | Refine result if necessary

Orthogonal factor matrices preserve length and distance in
compression

24



Exploiting low multilinear rank for tensor decompositions

Strategy with constraints [Vervliet et al., 2016c]:

1 | Compute LMLRA
2 | Decompose while exploiting structure

Core operations like norms, inner products and mtkrprod

exploit structure of the tensor

-

-

2

2

Many combinations of structures and decompositions possible
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Exploiting efficient representations in tensor decompositions

Tensorlab can compute tensors given in an efficient format
CPD, LMLRA, Tensor Train, Hankel, Löwner, . . .

using possibly coupled and/or symmetric decompositions
CPD, LL1, LMLRA, BTD

with possible constraints
nonnegativity, Hankel, Vandermonde, polynomial, orthogonal, . . .

Example: compute a nonnegative rank-5 CPD of a 500× 500× 500
tensor after randomized MLSVD compression using mlsvd_rsi
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Nonnegative CPD using MLSVD compression

Compute nonnegative rank-10 CPD of I × I × I tensor with SNR
20 dB:

26 28 210

10−1

100

101

102

×8.5

×1.6

I

T
im

e
(s

)

Projected GN

26 28 210

×7.6

×1.7

Full

Compressed

I

Parametric GN (SDF)

[Vervliet et al., 2016b]
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Nonnegative CPD using TT compression

Compute nonnegative rank-5 CPD of Nth-order 10× · · · × 10
tensor with SNR 20 dB:

5 6 7 8 9

10−1

100

101

102

×1.8

×10.8

Full

Compressed

Order N

T
im

e
(s

)

[Vervliet et al., 2016b]
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Variants and applications

Compression as preprocessing in the computation of unconstrained
and constrained decompositions

Thermodynamic data and curse of dimensionality

No tensor? Quantization and blessing of dimensionality
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Modeling multiway thermodynamic data

Modes: fraction atom/molecule n in a multi-component material
Value: Gibbs free energy, chemical potential, melting temperature
(e.g., computed using thermodynamic software)

First-order example
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Modeling multiway thermodynamic data

Modes: fraction atom/molecule n in a multi-component material
Value: Gibbs free energy, chemical potential, melting temperature
(e.g., computed using thermodynamic software)

Second-order example

I Alloy with c1 % iron, c2 % carbon and 100− c1 − c2 % nickel

I Discretize c1 and c2 in 100 steps

I Grid of size 1002

[Vervliet et al., 2014]
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Multiway dataset

I # constituent materials: 10 (thus N = 9)

I Size: 100× 100× · · · × 100 ≈ 1018 elements

I # Samples: 130 000 of which 30 000 are validation samples

I Model:

T =
R∑

r=1

a
(1)
r ⊗ a

(2)
r ⊗ · · · ⊗ a

(N)
r

Algorithm

I Tensorlab 3.0 with cpd_nls and UseCPDI option [Vervliet et al.,

2014, 2016d]

I Initialization: optimally scaled best-out-of-five strategy
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Visualization
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Fitting the model
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)

Figure: Errors on training Etr ( ) and validation Eval ( ) set and
the 99% quantile error Equant ( ) for different CPDs. The computation
time for each model is indicated by ( ) on the right y-axis.
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From a discrete model. . .

20 40 60 80 100
−1

0

1

2

3

a
9
r

to a continuous (e.g., polynomial) model

ti1···i9 ≈ f (c1, . . . , cN) =
R∑

r=1

∏
n=1

a
(n)
r (cn),

Advantage: allows interpolation, derivation and integration,
parameter reduction, . . .
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Recap

I From a ninth order tensor with 1018 elements. . .

I we took 100 000 samples. . .

I to get a rank-5 model with 5× 9× 100 = 4 500 parameters. . .

I to get a continuous model with O (100) parameters. . .

I in 3 min
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Variants and applications

Compression as preprocessing in the computation of unconstrained
and constrained decompositions

Thermodynamic data and curse of dimensionality

No tensor? Quantization and blessing of dimensionality
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Low-rank matrices can be used as compact models
for large-scale vectors

matricize
M

I × J ≈
∑P

≈
∑
⊗

vectorize

M = IJ → P(I + J)

[Khoromskij, 2012]
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The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5

 −−−−−→ R =

 1 z3

z z4

z2 z5

 =

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)

38



The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5



−−−−−→ R =

 1 z3

z z4

z2 z5

 =

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)

38



The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5

 −−−−−→ R =

 1 z3

z z4

z2 z5



=

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)

38



The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5

 −−−−−→ R =

 1 z3

z z4

z2 z5

 =

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)

38



The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5

 −−−−−→ R =

 1 z3

z z4

z2 z5

 =

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5



=

 1
z
z2

(1 z z2 z3
)

38



The approach holds exactly for (exponential) polynomials

Exponential polynomials = sum and/or products of exponentials,
sinusoids and/or polynomials

f =



1
z
z2

z3

z4

z5

 −−−−−→ R =

 1 z3

z z4

z2 z5

 =

 1
z
z2

(1 z3
)

R can be interpreted as a compact form of the Hankel matrix H

H =

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)

38



f (t) r(H) f (t) r(H)

az t 1
R∑

r=1
arz

t
r R

a sin(bt)
a cos(bt)

2
R∑

r=1
ar sin(br t) 2R

az t sin(bt) 2
R∑

r=1
arz

t
r sin(br t) 2R

p(t) =
Q∑

q=0
aqt

q Q + 1
R∑

r=1
pr (t)

R∑
r=1

Qr + R

p(t)z t Q + 1
R∑

r=1
pr (t)z tr

R∑
r=1

Qr + R

[Boussé et al., 2017]
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Periodic signals can be reshaped into low-rank matrices

one period




f =

r(R) = 1r(R) = 1r(R) = 2

[ ]
R =


R = half a period

[ ]
R =

Regardless of the type of signal, e.g., discontinuities are allowed.

40



Periodic signals can be reshaped into low-rank matrices

one period




f =

r(R) = 1

r(R) = 1r(R) = 2

[ ]
R =


R = half a period

[ ]
R =

Regardless of the type of signal, e.g., discontinuities are allowed.

40



Periodic signals can be reshaped into low-rank matrices

one period




f =

r(R) = 1

r(R) = 1

r(R) = 2

[ ]
R =


R =

half a period
[ ]

R =

Regardless of the type of signal, e.g., discontinuities are allowed.

40



Periodic signals can be reshaped into low-rank matrices

one period




f =

r(R) = 1r(R) = 1

r(R) = 2

[ ]
R =


R =

half a period
[ ]

R =

Regardless of the type of signal, e.g., discontinuities are allowed.

40



The approach also works well for more general compressible functions

ε = ‖f − vec(R̃)‖2
F

Low-rank approximation
of R = reshape(f)

Underlying function f (t)

Functions with rapidly converging Taylor series admit an
approximate low-rank model

|f (t)− p(t)| ≤ εTaylor

Taylor polynomial

Error bound!

[Grasedyck et al., 2013; Boussé et al., 2017]
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The singular values of R often decay fast, hence, f often admits
a good representation for low rank values.

0 1
0

1 original
function

rank-1
model

Gaussian

0 1
0

1

Sigmoid

0 1
0

1

Rational

0 1
0

1 original
function

rank-2
model

0 1
0

1

0 1
0

1
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Conclusion

Tensor problems are often large-scale

Transfer of know-how from scientific computing in high dimensions
to big data analysis

Alleviate/break curse of dimensionality

I using decompositions for analysis, compression, . . .

I by computations using randomization, incompleteness,
efficient representations, . . .

Dimensionality is also a blessing

I segmentation/quantization
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