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Combining EEG and fMRI:
EEG good temporal resolution (~ ms)
fMRI good spatial resolution (~ mm)

EEG measures electrical potentials on the scalp      fMRI localizes active brain regions

EEG fMRI

Recording brain activity with EEG and fMRI
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Recording brain activity with EEG and fMRI

Mixture and

indirect 
measurement

EEG

fMRI

Blood Oxygen Level Dependent Signal



Motivation for tensor-based BSS and fusion
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§ Both EEG and fMRI record a mixture of brain and non-brain signals
§ Low SNR → the more information the better
§ Complementary in terms of

§ Temporal and spatial resolution
§ Origin of the signal (electrical vs metabolic)



KEYTOOL : Blind source separation 
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EEG2 = a21s1 + a22s2 + a23s3
EEG1 = a11s1 + a12s2 + a13s3

EEG1
EEG2
EEG3

EEG3 = a31s1 + a32s2 + a33s3

Signal analysis difficult because of  artefacts    à REMOVE

Matrix based Blind Source Separation (BSS)

• Non-uniqueàConstraints are needed  (orthogonal, independency)

TENSOR based BSS: unique under mild conditions

ADD extra problem-specific constraints (nonnegative, sparse)

EEG A
?

ST ?=

C
P
D



Applications
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§ Epilepsy
§ Other neurological diseases

§ Sleep disorders
§ Schizophrenia
§ Alzheimer’s disease
§ Stroke

§ Cognitive science 
§ Task – information processing in the brain
§ Resting state

§ Assistive technologies
§ Consciousness detection
§ BCI, BMI

§ Commercial
§ Gaming
§ neuroeconomics



Epilepsy surgery
Refractory epilepsy
§ ~30% of all epilepsies
§ The occurrence of seizures cannot 
be controlled by medication

Focal epilepsy
§ Seizure originates within a certain 

network in the brain

Surgery
§ Key to success: 

precise localization of 
the epileptogenic zone



Presurgical evaluation
Epileptogenic zone
§ Hypothetical region
§ Use of complementary techniques

Structural MRI

SISCOM

Ictal Video-EEG monitoring

+ Psychological 
and psychiatric 
evaluation

[Y. Shirasaka, I. Mitsuyoshi
Brain and Development 1999]

PET

Interictal EEG-fMRI

http://fmri.uib.no/
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EEG analysis



Automated EEG analysis
Goal (clinic): 
§ identify the channels where the 

seizure originates



Automated EEG analysis
Goal (clinic): 
§ identify the channels where the 

seizure originates

Goal (signal processing):
§ Automate visual analysis
§ Artifact removal



Tensorization

Tensor
model

Interpretation

Automated tensor-based EEG analysis



Tensorization and signal model
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§ Time-frequency transformation 

(oscillatory patterns)

§ Short-time Fourier

§ Wavelet transform

§ Hilbert-Huang

§ Hankelization

(sums of exponentials)

§ Löwnerization

(rational functions)

§ Etc.



Tensor model selection

[Acar et al. 2007, 
De Vos et al 2007]

?



Tensor model selection
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§ Inspect multilinear singular values

§ Vary R and inspect
§ Explained variance
§ Core consistency

§ Run the model multiple times
§ Different initializations
§ Verify uniqueness



Tensor model selection

[Acar et al. 2007, 
De Vos et al 2007]

?



Tensor model selection

Diagnostic information:
§ morphology
§ topography
§ frequency

[Acar et al. 2007, 
De Vos et al 2007]



Tensor model selection

Diagnostic information:
§ morphology
§ topography
§ frequency

[Acar et al. 2007, 
De Vos et al 2007]

[Hunyadi et al 2014]
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Signal model: oscillatory pattern

fre
qu

en
cy

ch
an

ne
l

time

CWT-CPD 
(Acar 2007, 
De Vos 2007)

CWT-BTD
(Hunyadi et al 2014)



BTD of seizure 1: varying frequency
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BTD of seizure 2: varying source 
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Signal model: sum of exp. damped sinusoids
BTD of Hankel expanded tensors

ch
an

ne
l

Hankel

H-BTD
(De Lathauwer, 2011

Hunyadi et al. 2014)



Signal model: sum of exp. damped sinusoids
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Sources: sum of exponentials

Special case: sum of damped sinusoids

Hankelization

Rank(H) = Lr

Linear 
combination 
of sources



28

Signal model: sum of exp. damped sinusoids
BTD of Hankel expanded tensors

ch
an

ne
l

Hankel H-BTD
(De Lathauwer, 2011

Hunyadi et al. 2014)
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H-BTD of seizure 1

Lr=6



Eye blink artifact
§ If too L too high, the seizure and eye blink 

component will be intermixed
§ See demo!
§ Solution:

§ Model and remove eye blink before performing H-BTD

§ Eye blink ~ quadratic function

§ Löwnerization: f(x) sampled at two distinct points sets 
X={x1, x2,.. xI } and Y={y1, y2,.. yJ }
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Application: automated seizure detection

31

Epoch from first seizure Epoch classified as seizure

[Rodriguez Aldana 2017]



Application: Localization of seizure onset zone
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1. Few seizures -> long hospital stay
2. EEG resolution not great
3. Epileptic activity in deep structures not picked up

Therefore…



Presurgical evaluation
Epileptogenic zone
§ Hypothetical region
§ Use of complementary techniques

Structural MRI

SISCOM

Ictal Video-EEG monitoring

+ Psychological 
and psychiatric 
evaluation

[Y. Shirasaka, I. Mitsuyoshi
Brain and Development 1999]

PET

Interictal EEG-fMRI

http://fmri.uib.no/



EEG-correlated fMRI
1. Find interictal spikes on EEG
2. Create a vector of spike timing
3. Create a regressor  by convolving the 

timing vector with the HRF
4. Create regressors based on various 

confounders (e.g. head movement)
5. Analyze fMRI time series  within the 

general linear model (GLM):
Y = Xβ+e

6. Solution in the LS sense:
β = (XTX)-1XTy+e

7. Activation maps are obtained by 
statistical hypothesis testing of β values

GLM



EEG-correlated fMRI
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Success stories:

§ IED-related BOLD changes in focal and generalized epilepsy [Gotman 2006]
§ Instrumental in presurgical evaluation [Zijlmans 2007, Pittau 2012]

Hypothetically, the network is:

§ active during interictal spikes

§ focal and coincides with the true epileptogenic zone

But…
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EEG-correlated fMRI

40-70% EEG-fMRI studies fail 
due to lack of interictal spikes
[Grouiller et al. 2011]

Widespread activation 

GLM



ICA of interictal fMRI

[Rodionov et al 2007]
§ EEG-positive cases
§ Selection based on temporal regressor 

and GLM-based activation map

Spatial ICA vs Temporal ICA
§ Temporal ICA: used in EEG
§ fMRI: too few time points for robust statistics 

in the temporal mode
§ fMRI Spatial mode: 

§ vectorization of the 3D volume of voxels
§ Voxel x time matrices
§ Independence in the voxel mode: super-

Gaussian distributions (Infomax); high 
kurtosis (fastICA)

fMRI time 
series

Spatial 
ICA

XfMRI =            AfMRI SfMRI



ICA of EEG-negative fMRI
§ Data acquisition:

§ Simultaneous EEG-fMRI recordings
§ 10-22 minute long sessions
§ 2-4 sessions per individual

§ 28 patients refractory epilepsy patients
§ Presurgical evaluation è concordant results è known EZ
§ EEG-positive group: 11 had clinically concordant spikes 
§ EEG-negative group: 17 patient had no clinically concordant spikes

§ 12 healthy controls
§ Analysis:

§ Group ICA on all sessions for each individual separately
§ Overlap between each IC and known EZ
§ Artifact-related ICs rejected manually

38



ICA of EEG-negative fMRI
Results:

§ Epileptic IC (↓, eIC) was 
identified as the IC with the 
largest overlap with the EZ, 
after excluding artefacts (•).

§ ICA revealed epileptic 
sources overlapping with the 
EZ also in patients without 
spikes. 

§ Overlaps are significantly 
larger than in control group

[Hunyadi et al 2013]
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fMRI time series

Feature extraction 1

Classification 1
Artefact vs. BOLD 

BOLD 
IC?

ICA

fMRI ICs

Artefact ICs BOLD ICs

Feature extraction 2

Classification 2
Epileptic vs. Non E.

Epileptic 
IC?

Localisation 

Stop

YesNo

Yes

No

Feature extraction 2:

Classification 2:
§ LS-SVM with linear kernel and modified 

decision function:
[S

alim
i-K

horshidi et al. 
N

euroim
age 2014]

Selecting the epileptic IC

[H
unyadi et al, 

N
euroIm

age 2015]



Outcome in EEG-negative cases
§ Training set: 12 EEG-positive cases
§ A selection was made in 1 out of 13 controls: 92% specificity
§ A selection was made in 11 out of 18 patients

Informative (4)
Concordant with the EZ (4)

ECN (average of 6 
selected maps)

Related to epilepsy: 
[Zhang et al. 2009]

Artefact

Misleading (0)
Non-informative (7)



Tensor-based fMRI analysis
§ Tensor-PICA [Beckmann&Smith2005]:

§ Extension of previous model for multisession fMRI

§ Sessions have equal time courses (task-based fMRI)

§ Voxel x time x sessions OR voxel x time x subjects

§ CPD with independence constraint

§ BTD-(L,L,1) for spatially folded fMRI [Chatzichristos2017]

42
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EEG-correlated fMRI

40-70% EEG-fMRI studies fail 
due to lack of interictal spikes
[Grouiller et al. Brain 2011]

Widespread activation 

GLM



We need better spatiotemporal resolution
§ Symmetric EEG-fMRI integration
§ Find a common mode of variation
§ Joint decomposition (BSS) where signatures in this mode are 

shared 
§ Subject / patient

§ JointICA
§ Multichannel jointICA
§ CPD

§ Time
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Study cognitive function with EEG-fMRI
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GLM

Peak at 5s!

[Calhoun2006]



EEG-fMRI fusion via BSS
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s2(EEG)    s2(fMRI)

s1(EEG)    s1(fMRI)



EEG-fMRI fusion via BSS
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x1(fMRI) = a11s1 (fMRI) + a12s2 (fMRI)

s2(EEG)    s2(fMRI)

a11

a12

s1(EEG)    s1(fMRI)
x1(EEG)    x1(fMRI)

x1(EEG) = a11s1 (EEG) + a12s2 (EEG)



EEG-fMRI fusion via BSS
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s2(EEG)    s2(fMRI)

a11

a12

a21

a22

s1(EEG)    s1(fMRI)
x1(EEG)    x1(fMRI)

x2(EEG)    x2(fMRI)

x1(fMRI) = a11s1 (fMRI) + a12s2 (fMRI)

x1(EEG) = a11s1 (EEG) + a12s2 (EEG)

x2(fMRI) = a21s1 (fMRI) + a22s2 (fMRI)

x2(EEG) = a21s1 (EEG) + a22s2 (EEG)



EEG-fMRI fusion via BSS
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s2(EEG)    s2(fMRI)

a11

a12

a21

a22

s1(EEG)    s1(fMRI)
x1(EEG)    x1(fMRI)

x2(EEG)    x2(fMRI)

X(EEG)=AS(EEG)

X(fMRI)=AS(fMRI)
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EEG-correlated fMRI

GLM
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Traditional GLM-based analysis 

Spikes and slow waves reflect
different neural processes. In
GLM, they are modelled as one
entity, causing widespread
activation.

Goal: Disentangle the different
neural processes from
multisubject EEG-fMRI in order to
obtain a better spatiotemporal
characterization

GLM

spike   slow wave
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Data representation

IED1
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Data representation

IED1

Masked fMRI 
activation maps

(GLM)

vectorization
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Masked fMRI 
activation maps

(GLM)

vectorization

im1 im2     im3

XfMRI

Data representation

XEEG

IED1 IED3

IED2



Joint blind source separation (1): 
jointICA
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=               +             +…+

EEG – fMRI 
observations

pa
tie

nt

XEEG

XfMRI

Statistical independence

[Calhoun 2006]



JointICA: Visual detection task [Mijovic 2012]
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=               +             +…+

EEG – fMRI 
observations

pa
tie

nt



Joint blind source separation (2): 
t-jointICA
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XEEG

XfMRI

EEG – fMRI 
observations

pa
tie

nt

=               +             +…+

Statistical independence

[Swinnen 2014]



Joint blind source separation (3): 

Coupled tensor-matrix factorization

59

patient

voxels

patient

time

channel
= +                  + … +

= +                  + … +

[Acar 2014, Hunyadi 2016]



Experiments
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Dataset
§ 10 temporal lobe epilepsy (TLE) patients, 5 right, 5 left
§ To get a consistent set, the EEG and the fMRI of the LTLE patients are 

mirrored

Model selection
§ R=2 was chosen



Results: epileptic network 

average IED and 
GLM-based 
activation map

“onset” “propagation / inhibition”

p1

q1

s1fMRI

p2

q2

s2fMRI
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We need better spatiotemporal resolution
§ Symmetric EEG-fMRI integration
§ Find a common mode of variation
§ Joint decomposition (BSS) where signatures in this mode are 

shared 
§ Subject / patient

§ JointICA
§ Multichannel jointICA
§ CPD

§ Time
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EEG-fMRI fusion in the temporal mode

63

s1 sR

y1 yR



The proposed approach

1 component / source  = temporal pattern (s)
+ activity over channels (b)
+ activity over frequencies (c)

EEG decomposed into components

s1 sR



Hemodynamic coupling

modelled time course in 1 voxel



Hemodynamic coupling

modelled time course in 1 voxel



Hemodynamic coupling

activation pattern over voxels

modelled time course in 1 voxel



EEG-fMRI fusion in the temporal mode

68[Van Eyndhoven 2016]



Advantages of the approach
In a simualtion study, it was shown that
§ Proposed appraoch can estimate subject-specific HRF
§ Accounting for HRF variability results in more accurate 

characterization of neural sources of activity
§ In spatial / temporal / spectral domain

§ Proposed approach can deal with
§ different changes in HRF waveform
§ spatially / temporally correlated noise
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Summary
§ EEG and fMRI measure a mixture of brain and non-brain 

sources, resulting in low SNR
§ Tensor-based blind source separation is a powerful way to

deal with this problem
§ Successful applications in EEG and in fMRI
§ Fusion of EEG-fMRI for better spatiotemporal resolution
§ Tensor-based fusion along a common mode of variation 

70



27-08-18

71

Acknowledgments
| University Hospitals Leuven Gasthuisberg

| KU Leuven, Dept. Electrical Engineering-ESAT, division  STADIUS

| KU Leuven, Dept. of Psychology

| University of Oxford, Institute of Biomedical Engineering

| Universidad de Oriente, Cuba

ERC advanced grant 339804 BIOTENSORS in collaboration with L. De Lathauwer and group

Thank you!

www.esat.kuleuven.be/stadius/biomed


