
Numerical optimization-based tensor algorithms

Nico Vervliet

Lieven De Lathauwer

EURASIP Summer School
August 29, 2018

A second-order optimization framework for the computation of tensor decompositions

min −

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∥

2

F

subject to parametric, box or soft constraints
coupling constraints
symmetry constraints

2

Alternating Least Squares versus Gauss–Newton: exact case

0 200 400 600 800 1 000
10−32

10−22

10−12

10−2

GN

ALS

iteration k

obj. fun.
value f

Rank-10 tensor of size 250× 250× 250, correlated factor vectors.
3

Alternating Least Squares versus Gauss–Newton: noisy case

10−1

100
GN

ALSobj. fun.
value f

0 100 200 300

10−2

10−1

100
GN

ALS

iteration k

max. relative
error factor

matrices ECPD

Rank-10 tensor of size 250× 250× 250, correlated factor vectors, SNR is 20 dB.
4

Advantages of second-order information for tensor computations

Good convergence properties
Global convergence; up to quadratic convergence near local optima

Robust to initialization
Often few initializations required

Less susceptible to swamps

Easy to incorporate constraints
E.g., parametric, box and soft constraints

All multilinear structure can be exploited

Same asymptotic complexity as ALS

5

Intermezzo: local approximation using a Taylor series expansion

1 1 1 1

f (x) ≈ f (1)

≈ f (1) +
df (1)

dx
(x − 1)

≈ f (1) +
df (1)

dx
(x − 1) +

1

2

d2f (1)

dx2
(x − 1)2

6

Newton approach: local second-order approximation of objective function

Instead of using the nonlinear least squares objective function

min
z

f (z) with f (z) =
1

2
||m(z)− t||2F ,

we solve

min
pk

f̃ (pk) with f̃ (pk) ≈ f (zk) + pT
k · ∇zf (zk)︸ ︷︷ ︸

gk

+
1

2
pT
k · ∇2

zf (zk)︸ ︷︷ ︸
Hk

· pk

and pk can be found from

Hkpk = −gk
The variables are then updated as

zk+1 = zk + αkpk

The model is m(z) = vec (JA,B,CK) with variables z =
[
vec (A) ; vec (B) ; vec (C)

]
and t = vec (T).

7

Newton approach: local second-order approximation of objective function

Instead of using the nonlinear least squares objective function

min
z

f (z) with f (z) =
1

2
||m(z)− t||2F ,

we solve

min
pk

f̃ (pk) with f̃ (pk) ≈ f (zk) + pT
k · ∇zf (zk)︸ ︷︷ ︸

gk

+
1

2
pT
k · ∇2

zf (zk)︸ ︷︷ ︸
Hk

· pk

and pk can be found from

Hkpk = −gk
The variables are then updated as

zk+1 = zk + αkpk

The model is m(z) = vec (JA,B,CK) with variables z =
[
vec (A) ; vec (B) ; vec (C)

]
and t = vec (T).

7

Newton approach: local second-order approximation of objective function

Instead of using the nonlinear least squares objective function

min
z

f (z) with f (z) =
1

2
||m(z)− t||2F ,

we solve

min
pk

f̃ (pk) with f̃ (pk) ≈ f (zk) + pT
k · ∇zf (zk)︸ ︷︷ ︸

gk

+
1

2
pT
k · ∇2

zf (zk)︸ ︷︷ ︸
Hk

· pk

and pk can be found from

Hkpk = −gk
The variables are then updated as

zk+1 = zk + αkpk

The model is m(z) = vec (JA,B,CK) with variables z =
[
vec (A) ; vec (B) ; vec (C)

]
and t = vec (T).

7

Quasi-Newton and Gauss–Newton

Unfortunately, computing the Hessian Hk is

expensive to compute

not always positive semidefinite

Therefore, Hk is approximated:

for gradient or steepest descent, Hk = I

for NCG, Hk = I− γpk−1δT

for BFGS, Hk = Hk−1 + Uk−1 + Vk−1

for Gauss–Newton (GN), Hk = JT
kJk

for Levenberg–Marquardt (LM), Hk = JT
kJk + λI

We focus on GN in this talk

8

Quasi-Newton and Gauss–Newton

Unfortunately, computing the Hessian Hk is

expensive to compute

not always positive semidefinite

Therefore, Hk is approximated:

for gradient or steepest descent, Hk = I

for NCG, Hk = I− γpk−1δT

for BFGS, Hk = Hk−1 + Uk−1 + Vk−1

for Gauss–Newton (GN), Hk = JT
kJk

for Levenberg–Marquardt (LM), Hk = JT
kJk + λI

We focus on GN in this talk

8

Direct and iterative methods for solving Hp = −g

Using direct algorithms

Pseudoinversion
p = −H†g

LDL factorization
p = −L−TD†L−1g

Using conjugate gradients (inexact)

Iterative solution using only products of form

yl = Hxl−1

Preconditioning techniques
M−1Hp = −M−1g

LDL factorization: H = LDLT with L lower triangular and D diagonal.
9

Direct and iterative methods for solving Hp = −g

Using direct algorithms

Pseudoinversion
p = −H†g

LDL factorization
p = −L−TD†L−1g

Using conjugate gradients (inexact)

Iterative solution using only products of form

yl = Hxl−1

Preconditioning techniques
M−1Hp = −M−1g

LDL factorization: H = LDLT with L lower triangular and D diagonal.
9

Direct and iterative methods for solving Hp = −g

0 40 80 120
10−12

10−8

10−4

100

CG (101 iterations)
PCG (46 iterations)

pseudoinverse
(direct)

Time (ms)

Relative residual
||Hp+g||
||−g||

Rank-5 tensor of size 40× 40× 40, correlated factor vectors, SNR is 20 dB.
10

Inexact Gauss–Newton for CPD

Goal: find best variables z =
[
vec (A) ; vec (B) ; vec (C)

]
via

min
z

1

2
||JA,B,CK− T ||2F

Starting from z0, each iteration we

solve
Hkpk = −gk

for pk with Hk = JT
kJk

and update
zk = zk−1 + αkpk

11

Inexact Gauss–Newton for CPD

Solve system Hp = −g with CG using only Hessian-vector products

yl = JTJxl−1

starting from x0.
Partition all computed variables according to factor matrices:

g =
[
gA; gB; gC

]
p =

[
pA;pB;pC

]
J =

[
JA, JB, JC

]
x =

[
xA; xB; xC

]
y =

[
yA; yB; yC

]

12

Inexact Gauss–Newton for CPD

((C�B)⊗ II)
T ((C�B)⊗ II)

JT
CJA

vec (PA)

·

vec (GB)

=

H · p = −g

13

Inexact Gauss–Newton for CPD

Gradient is computed using matricized tensor times Khatri–Rao product (mtkrprod)
on residual R = JA,B,CK− T

gA = vec
(
R(1)(C�B)

)
gB = vec

(
R(2)(C�A)

)
gC = vec

(
R(3)(B�A)

)
Gramian-vector product y = JTJx is computed as

yA = JT
AJAxA + JT

AJBxB + JT
AJCxC

and so on for yB and yC, and

JT
AJAxA = vec (XAW) with W = (CTC) ∗ (BTB)

JT
AJBxB = vec (AW) with W = (CTC) ∗ (XT

BB)

JT
AJCxC = vec (AW) with W = (XT

CC) ∗ (BTB)

14

Parametric constraints

Each factor matrix, e.g., A, is a function of some underlying variable z.

Nonnegativity by squaring
A = Z ∗ Z

Normalized matrix

air = zir/

√∑
k

z2kr

Polynomial constraint

air = z0r + z1r ti + z2r t
2
i + . . .+ zdr t

d
i

or in matrix form A = MZ with

air =
[
1 ti t2i . . . tdi

]︸ ︷︷ ︸
M(i ,:)

[
z0r z1r z2r . . . zdr

]T︸ ︷︷ ︸
zTr

Hankel structure
air = zi+r−1

15

Parametric constraints

Each factor matrix, e.g., A, is a function of some underlying variable z.

Nonnegativity by squaring
A = Z ∗ Z

Normalized matrix

air = zir/

√∑
k

z2kr

Polynomial constraint

air = z0r + z1r ti + z2r t
2
i + . . .+ zdr t

d
i

or in matrix form A = MZ with

air =
[
1 ti t2i . . . tdi

]︸ ︷︷ ︸
M(i ,:)

[
z0r z1r z2r . . . zdr

]T︸ ︷︷ ︸
zTr

Hankel structure
air = zi+r−1

15

Parametric constraints

Each factor matrix, e.g., A, is a function of some underlying variable z.

Nonnegativity by squaring
A = Z ∗ Z

Normalized matrix

air = zir/

√∑
k

z2kr

Polynomial constraint

air = z0r + z1r ti + z2r t
2
i + . . .+ zdr t

d
i

or in matrix form A = MZ with

air =
[
1 ti t2i . . . tdi

]︸ ︷︷ ︸
M(i ,:)

[
z0r z1r z2r . . . zdr

]T︸ ︷︷ ︸
zTr

Hankel structure
air = zi+r−1

15

Parametric constraints

Each factor matrix, e.g., A, is a function of some underlying variable z.

Nonnegativity by squaring
A = Z ∗ Z

Normalized matrix

air = zir/

√∑
k

z2kr

Polynomial constraint

air = z0r + z1r ti + z2r t
2
i + . . .+ zdr t

d
i

or in matrix form A = MZ with

air =
[
1 ti t2i . . . tdi

]︸ ︷︷ ︸
M(i ,:)

[
z0r z1r z2r . . . zdr

]T︸ ︷︷ ︸
zTr

Hankel structure
air = zi+r−1

15

Parametric constraints

Optimize w.r.t. underlying variables z = [α;β;γ] instead of factor matrices A,B,C

JT
α

0

HJT
z

Jα

·

JT
γ

=

JT
zJz −gp· · · = ·

16

Example: nonnegativity constraint using squared variables

Suppose A = D ∗D, i.e., α = vec (D), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (2D ∗ GA)

the Gramian-vector product w.r.t. α is computed as

X̃A = 2D ∗ Xα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = 2D ∗ ỸA

17

Example: nonnegativity constraint using squared variables

Suppose A = D ∗D, i.e., α = vec (D), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (2D ∗ GA)

the Gramian-vector product w.r.t. α is computed as

X̃A = 2D ∗ Xα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = 2D ∗ ỸA

17

Example: polynomial constraints

Suppose A = MQ, i.e., α = vec (Q), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (MTGA)

the Gramian-vector product w.r.t. α is computed as

X̃A = MXα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = MTỸA

18

Example: polynomial constraints

Suppose A = MQ, i.e., α = vec (Q), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (MTGA)

the Gramian-vector product w.r.t. α is computed as

X̃A = MXα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = MTỸA

18

Active set methods for bound constraints

min
z

1

2
||JA,B,CK− T ||2F subject to l ≤ z ≤ u

Define the active set A and the inactive set I and partition accordingly

A = {i | li = zi or zi = ui},
I = {i | li < zi and zi < ui},

The step p is then computed from

H

[
p̃I
0

]
= −

[
gI
0

]
p̃A = −gA.

and

pi =


li − zi if zi + p̃i ≤ li

ui − zi if zi + p̃i ≥ ui

p̃i otherwise

19

Active set methods for bound constraints

min
z

1

2
||JA,B,CK− T ||2F subject to l ≤ z ≤ u

Define the active set A and the inactive set I and partition accordingly

A = {i | li = zi or zi = ui},
I = {i | li < zi and zi < ui},

The step p is then computed from

H

[
p̃I
0

]
= −

[
gI
0

]
p̃A = −gA.

and

pi =


li − zi if zi + p̃i ≤ li

ui − zi if zi + p̃i ≥ ui

p̃i otherwise
19

Symmetry constraints

min
z

1

2
||JA,A,CK− T ||2F

I

0

· =

· =

sum blocks

20

Coupling constraints

Two tensors T1 and T2 can be factorized jointly using

min
z

ω1

2
||JA,B,CK− T1||2F +

ω2

2
||JD,E,FK− T2||2F

The factorizations can be coupled by

coupling factor matrices, e.g., A = D

partial coupling, e.g., A =
[
a1 a2 a3

]
and D =

[
a1 a2 d3

]
coupling through variables A = h1(α) and D = h2(α)

21

Coupling constraints: coupled tensor matrix factorization example

min
z

ω1

2
||JA,B,CK− T ||2F +

ω2

2
||CDT −M||2F

+ · +=

ω1H1(+ ω2H2) · p = −ω1g1(− ω2g2)

0

Soft coupling constraints can be handled similarly.

22

Coupling constraints: coupled tensor matrix factorization example

min
z

ω1

2
||JA,B,CK− T ||2F +

ω2

2
||CDT −M||2F

+ · +=

ω1H1(+ ω2H2) · p = −ω1g1(− ω2g2)

0

Soft coupling constraints can be handled similarly.

22

Multigrid sampling and coupled decompositions

Approximate a function h(x , y) by

h̃(x , y) =
3∑

r=1

ar (x)br (y)

using two noisy measurements H1 and H2 on two different grids

H1 H2

23

Multigrid sampling and coupled decompositions

Perform coupled decomposition of H1 and H2 with additional polynomial constraints:

H1 ≈ ABT H2 ≈ CDT

with

A = M1Q1 B = M1Q2

C = M2Q1 D = M2Q2

by solving the optimization problem

min
Q1,Q2

ω1

2 · Ω
||H1 − ABT||2F +

ω2

2 · Ω
||H2 − CDT||2F

subject to A = M1Q1, B = M1Q2, C = M2Q1, D = M2Q2

M1 and M2 are (known) evaluated basis functions. Ω is a normalization factor.
24

Multigrid sampling and coupled decompositions

Implementation using Tensorlab 4.0 syntax

model.variables.Q1 = rand(5,3);

model.variables.Q2 = rand(5,3);

model.factors.A = {’Q1’, struct_matvec(M1)};

model.factors.B = {’Q2’, struct_matvec(M1)};

model.factors.C = {’Q1’, struct_matvec(M2)};

model.factors.D = {’Q2’, struct_matvec(M2)};

model.factorizations.H1.data = H1;

model.factorizations.H1.cpd = {’A’, ’B’};

model.factorizations.H1.weight = omega1;

model.factorizations.H2.data = H2;

model.factorizations.H2.cpd = {’C’, ’D’};

model.factorizations.H2.weight = omega2;

sol = sdf_nls(model, ’CGMaxIter’, 50);

25

Multigrid sampling and coupled decompositions

10−3 10−2 10−1 100 101 102 103

1.02

0.85

1.64
·10−2

Only H1

Only H2

ω2/ω1

validation
error E

26

Conclusion

Second-order algorithms such as (inexact) Gauss–Newton are well suited for coupled
and constrained tensor decomposition thanks to

favorable convergence properties, and

the possibility to exploit multilinear structure.

For more information, software and tutorials, see

book chapter on “Numerical optimization-based algorithms for data fusion”

Tensorlab (www.tensorlab.net)

user guide (www.tensorlab.net/doc)

demos (www.tensorlab.net/demos)

27

Conclusion

Second-order algorithms such as (inexact) Gauss–Newton are well suited for coupled
and constrained tensor decomposition thanks to

favorable convergence properties, and

the possibility to exploit multilinear structure.

For more information, software and tutorials, see

book chapter on “Numerical optimization-based algorithms for data fusion”

Tensorlab (www.tensorlab.net)

user guide (www.tensorlab.net/doc)

demos (www.tensorlab.net/demos)

27

Numerical optimization-based tensor algorithms

Nico Vervliet

Lieven De Lathauwer

EURASIP Summer School
August 29, 2018

Bibliography

Overview of techniques

N. Vervliet and L. De Lathauwer, “Numerical optimization based algorithms for
data fusion”, in Data Fusion Methodology and Applications, M. Cocchi, Ed.,
Accepted for publication., Elsevier, 2018

General tensor techniques

A. Cichocki, D. Mandic, et al., “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis”, IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015

N. D. Sidiropoulos, L. De Lathauwer, et al., “Tensor decomposition for signal
processing and machine learning”, IEEE Trans. Signal Process., vol. 65, no. 13,
pp. 3551–3582, Jul. 2017

Software

N. Vervliet, O. Debals, et al., Tensorlab 3.0, Available online at
https://www.tensorlab.net, Mar. 2016

2

https://www.tensorlab.net

Bibliography

General optimization

J. Nocedal and S. J. Wright, Numerical Optimization, Second edition. New York:
Springer, 2006

L. Sorber, M. Van Barel, and L. De Lathauwer, “Unconstrained optimization of
real functions in complex variables”, SIAM J. Optim., vol. 22, no. 3,
pp. 879–898, Jan. 2012

Underlying techniques

L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based algorithms
for tensor decompositions: Canonical polyadic decomposition, decomposition in
rank-(Lr , Lr , 1) terms, and a new generalization”, SIAM J. Optim., vol. 23, no. 2,
pp. 695–720, Apr. 2013

L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion”, IEEE J.
Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600, Jun. 2015

3

	Optimization-based algorithms for tensor decompositions
	ALS versus NLS
	Basic optimization
	Application
	Constraints
	Coupling
	Example
	Conclusion
	:ignore:

