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Nonnegative Matrix Factorization (NMF)

Given a matrix M ∈ Rp×n
+ and a factorization rank r � min(p, n), find

U ∈ Rp×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i ,j

(M − UV )2
ij . (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k , i)︸ ︷︷ ︸
≥0

for all i .

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation).
→ Many applications. image processing, text mining, hyperspectral
unmixing, community detection, clustering, etc.
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Example 1: Blind hyperspectral unmixing

Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels.
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Linear mixing model
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Linear mixing model
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Example 1: Blind hyperspectral unmixing with NMF

Basis elements allow to recover the different endmembers: U ≥ 0;

Abundances of the endmembers in each pixel: V ≥ 0.
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Urban hyperspectral image
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Urban hyperspectral image

Figure: Decomposition of the Urban dataset.
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Example 2: topic recovery and document classification

Basis elements allow to recover the different topics;

Weights allow to assign each text to its corresponding topics.
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NMF Algorithms

Given a matrix M ∈ Rm×n
+ and a factorization rank r ∈ N:

min
U∈Rm×r

+ ,V∈Rr×n
+

||M − UV ||2F =
∑
i ,j

(M − UV )2
ij . (NMF)

NMF is NP-hard (Vavasis, 2009).

Standard framework:

0. Initialize (U, V ). Then, alternatively update U and V :

1. Update V ≈ argminX≥0 ||M − UX ||2F . (NNLS)
2. Update U ≈ argminY≥0 ||M − YV ||2F . (NNLS)

Most NMF algorithms come with no guarantees (except convergence to
stationary points).

Solution is in general highly non-unique: indentifiability issues.
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NMF under the separability assumption
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Separability Assumption

Separability of M: there exists an index set K and V ≥ 0 with
M = M(:,K)︸ ︷︷ ︸

U

V , with |K| = r .

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization –
Provably, STOC 2012.
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Applications

In hyperspectral imaging, this is the pure-pixel assumption: for each
material, there is a ‘pure’ pixel containing only that material.
[M+14] Ma et al., A Signal Processing Perspective on Hyperspectral Unmixing: Insights
from Remote Sensing, IEEE Signal Processing Magazine 31(1):67-81, 2014.

In document classification: for each topic, there is a ‘pure’ word used
only by that topic (an ‘anchor’ word).
[A+13] Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees,
ICML 2013.

Time-resolved Raman spectra analysis: each substance has a peak in
its spectrum while the other spectra are (close) to zero.
[L+16] Luce et al., Using Separable Nonnegative Matrix Factorization for the Analysis of
Time-Resolved Raman Spectra, Appl Spectrosc. 2016.

Others: video summarization, foreground-background separation.
[ESV12] Elhamifar, Sapiro, Vidal, See all by looking at a few: Sparse modeling for finding
representative objects, CVPR 2012.
[KSK13] Kumar, Sindhwani, Near-separable Non-negative Matrix Factorization with `1-
and Bregman Loss Functions, SIAM data mining 2015.
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Combinatorial formulation for separable NMF

We want to find the index set K with |K| = r such that

M = M(:,K)V .

This is equivalent to finding X ∈ Rn×n with r non-zero rows such that

M = M X .

A combinatorial formulation:

min
X
||X ||row,0 such that M = MX or ||M −MX || ≤ ε.

How to make X row sparse?
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A Linear Optimization Model

min
X∈Rn×n

+

trace(X ) = || diag(X )||1

such that ||M −MX || ≤ ε,
Xij ≤ Xii ≤ 1 for all i , j .

Robustness: noise ≤ O
(
κ(U)−1

)
⇒ error ≤ O

(
rε
κ

)
[GL14].

This model is an improvement over [B+12]: more robust and detects the
factorization rank r automatically.
It is equivalent [GL16] to using ||X ||1,∞ =

∑d
i=1 ||X (i , :)||∞ as a convex

surrogate for ||X ||row,0 [E+12].

[GL14] G., Luce, Robust Near-Separable NMF Using Linear Optimization, JMLR 2014.

[B+12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with LPs, NIPS 2012.
[E+12] Esser et al., A convex model for NMF and dimensionality reduction on physical space,
IEEE Trans. Image Processing, 2012.
[GL16] G. and Luce, A Fast Gradient Method for Nonnegative Sparse Regression with Self
Dictionary, IEEE Trans. Image Processing, 2018.
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Practical Model and Algorithm

min
X∈Ω

||M −MX ||2F + µ tr(X ),

Ω = {X ∈ Rn,n | Xii ≤ 1,wiXij ≤ wjXii∀i , j}.

We used a fast gradient method (optimal 1st order):

1 Choose an initial point X (0), Y = X (0), α1 ∈ (0, 1).

2 k = 1, 2, . . .

1 X (k) = PΩ

(
Y − 1

L∇f (Y )
)
.

2 Y = X (k)+βk
(
X (k) − X (k−1)

)
,

where βk = αk (1−αk )
α2

k+αk+1
with αk+1 ≥ 0 t.q. α2

k+1 = (1− αk+1)α2
k .

Projection onto Ω can be done effectively in O(n2 log(n)) operations.

The total computational cost is O(pn2) operations.

[GL16] G. and Luce, A Fast Gradient Method for Nonnegative Sparse Regression with Self
Dictionary, IEEE Trans. Image Processing, 2018.
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Hyperspectral unmixing

r = 6 r = 8

Time (s.) Rel. err. (%) Time (s.) Rel. err. (%)

VCA 1.02 18.05 1.05 22.68
VCA-500 0.03 7.19 0.09 7.25

SPA 0.26 9.58 0.32 9.45
SPA-500 <0.01 10.05 <0.01 8.86

SNPA 13.60 9.63 23.02 5.64
SNPA-500 0.15 10.05 0.25 8.86

XRAY 28.17 7.50 95.34 6.82
XRAY-500 0.15 8.07 0.28 7.36

H2NMF 12.20 5.81 14.92 5.47
H2NMF-500 0.27 5.87 0.37 5.68

FGNSR-500 40.11 5.07 39.49 4.08

Table: Numerical results for the Urban HSI (the best result is highlighted in bold).
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Figure: Abundance maps extracted by FGNSR-500.
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Why only self-dictionary?

We can generalize the previous model to any dictionary:

M ≈ D(:,K)︸ ︷︷ ︸
=U

V ,

where K selects atoms in the dictionary D ∈ Rp×d (e.g., a hyperspectral
library).

As before, this is equivalent to

min
X
||X ||row,0 such that M = DX ,

for which there exists convex relaxations, e.g., replace ||X ||row,0 with

||X ||1,q =
∑d

i=1 ||X (i , :)||q.
Again, this is computationally expensive for d large (d2 variables).

[ESV12] Elhamifar, Sapiro, Vidal, See all by looking at a few: Sparse modeling for
finding representative objects, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012.
[E+12] Esser et al., A convex model for nonnegative matrix factorization and
dimensionality reduction on physical space, IEEE Trans. Image Process. 2012.
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A combinatorial model and algorithm

We want to solve

min
K,V
||M − D(:,K)V ||2F such that |K| = r and V ≥ 0.

Introduce U and solve

min
K,U,V

||M − UV ||2F+δ||U − D(:,K)||2F such that |K| = r and V ≥ 0.

via alternating optimization:

! Optimal update for each variable U, V and K.

! Computationally cheap, O(pnr) if using a first-order method to
update U and V .

! In practice, it is always able to improve the provided initial solution.

% No optimality/recovery guarantee.
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Numerical results for the Urban data set

r = 6 r = 8

Time (s.) Rel. err. Time (s.) Rel. err.

RAND-be 0.00 13.77 0.00 5.54
d-RAND-be 22.01 (11) 4.36 36.18 (19) 4.16

SPA 0.30 9.58 0.30 9.45
d-SPA 24.37 (13) 4.67 28.61 (14) 4.62

SNPA 24.34 9.63 36.72 5.64
d-SNPA 23.04 (13) 4.94 27.94 (13) 3.97
H2NMF 19.02 5.81 22.35 5.47

d-H2NMF 26.66 (15) 4.05 28.92 (14) 4.24

FGNSR-100 2.73 5.58 2.55 4.62
d-FGNSR-100 26.72 (14) 4.36 20.81 (8) 4.04

FGNSR-500 40.11 5.07 39.49 4.08
d-FGNSR-500 25.07 (13) 4.40 26.83 (12) 4.13
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Figure: Abundance maps extracted by d-H2NMF.
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Dictionary-based decompositions for
tensors
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CPD and the problem of interpretability

= •1 •2 •3

T = (A ⊗ B ⊗ C) IR

T = [|A ; B ; C|]

CPD: if unique, estimated factors should match true factors.

Interpretability problems

% Presence of noise deteriorates solutions.

% Uniqueness may not be ensured.

% Finding the best low-rank approximation is NP-hard in general.

Consequence: results may not have any physical meaning.

! Using dictionaries guarantees interpretability.
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Dictionaries in signal processing (in a nutshell)

M = DX, ‖X‖0 < δ

=M D
X

Fixed Dictionary (Sparse Coding)

minimize
∑

i ‖mi −D(:,Ki )xi‖2
2

over Ki , xi .
[Donoho 03, Tropp 04]

Learnt Dictionary (DL,SCA)

minimize
∑

i ‖mi −Dxi‖2
2 + λ‖xi‖1

over D, xi .
Algorithms: [Olshausen 97, Elad 06,
Mairal 10],

Other forms of regularization (low rank, group sparsity, separability,
nonnegativity, tensor structure).
Dictionary learning and sparse coding are among the key topics in
both signal processing and machine learning.
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Sparse coding for tensors?

Put the constraints on A.

T = (D(:,K)⊗ B⊗ C)IR

where |K| = R.

! Generalizes easily to any order.

! Alternating algorithms can be adapted easily. Low memory
requirement.

! Can be adapted for multiple atom selection (future work).
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Theoretical gain

Theorem (Matrix factorization is identifiable)

If spark(D) > R, R = rank(M), |K| = R, and if there exists
M = D(:,K)B, then this factorization is essentially unique.

Theorem (Tensor factorization is often identifiable)

If spark(D) > R, R = rank(M), |K| = R, and if there exists
T = (D(:,K)⊗ B⊗ C)IR , then the following holds:

(B� C) is full rank ⇒ the factorization is unique.

Theorem (3d order tensor best approximation exists)

If spark(D) > R, R = rank(M) and #K = R, then the minimum of

f (K,B,C) = ‖T − (D(:,K)⊗ B⊗ C)IR‖2
F

over the variables (K,B,C) always exists.

Earlier works related to MMV: [Cotter 05, Chen 06]
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Yet another alternating algorithm

min
A,B,C,K

‖T − (A⊗ B⊗ C)IR‖2
F + λ‖A−D(:,K)‖2

F .

Iterate until convergence:

1 Factors are updated by any well-known algorithm (ALS,
gradient-based methods. . . ).

2 K is obtained by finding the closest atom in D for each column of A.

3 Increase λ if necessary.

Tricks:

To impose that no atom is selected twice, solve an assignment
problem.
If factors are constrained, simply use any off-the-shelf solver.
Parameter λ may be tuned for naive flexible dictionary constraint.

[CG18] Cohen, G., Dictionary-based Tensor Canonical Polyadic Decomposition, IEEE
Trans. on Signal Processing, 2018.
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Numerical results: ALS vs. Dictionary-ALS (MPALS)

A(0) = D(:,K),B(0),C(0) randomly generated, D ill-conditioned,

SNR∼11.5dB, and use C← C(0)
(
ρIR + (1−ρ)

R 1R×R

)
(ill-conditioned).

We need real-world tensor data to validate MPALS further.
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Extensions to multiple dictionaries

A = [D1(:,K1), . . . ,DN(:,Kn)] with di ≤ |K|i ≤ d̄i and
∑

i |K|i = R.

Sources 𝑎𝑖 Libraries 𝐷𝑘

[CG18] Cohen, G., Spectral Unmixing with Multiple Dictionaries, IEEE Geoscience and
Remote Sensing Letters, 2018.
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Low-rank
sparse component analysis



Problem formulation: Low-rank SCA

Decompose a low rank matrix/tensor with known coefficients sparsity.

LRSCA :


M = AB, A ∈ Rd×R ,B ∈ RR×n,
rank(M) = rank(A) = R,
‖B(:, i)‖0 ≤ k < R.

Many existing theoretical results (see e.g. [Gribonval 16]) and algorithms
(Dictionary Learning). But:

% Not many results specific to the low-rank case

% Only two deterministic identifiability results [Elad 06, Georgiev 05]

% Not much in the tensor case except `1 regularization?
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Geometric intuition

Example: d = 3,R = 3, k = 2, n = 6.

data points
first decomposition

second decomposition
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Our identifiability results

Theorem

Let M = AB satisfy the LRSCA model. The factorization (A,B) is
essentially unique if on each hyperplane spanned by all but one column of

A, there are
⌊
R(R−2)
R−k

⌋
+ 1 data points with spark R.

! For k = R − 1, this requires R3 − 2R2 + R data points and it is tight
up to the constant R (counter examples for any n = R3 − 2R2).

! For k = 1, this requires R data points and it is tight (one on each
intersection of R − 1 hyperplanes).

! It is tight up to constant factors for any k = βR for any fixed
constant β.

! Nonnegativity helps both in theory and in practice: further work.

[CG18] Cohen, G., Identifiability of Low-Rank Sparse Component Analysis,
arXiv:1808.08765.
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Geometric intuition

Example: d = 3,R = 3, k = 2, n = 4 + 3 + 2.

data points
unique decomposition
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Sparsity in action

Spectral unmixing, R = 6, k = 2

! Sparsity is another way to obtain identifiability for matrix
decompositions.

! Need to explore the extension to tensors.

% Hard combinatorial problems to solve. . .
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Take-home messages

1 NMF is a useful and widely used linear model in data analysis and
machine learning.

2 NMF is difficult (NP-hard) and ill-posed (non-uniqueness).

3 NMF with (self-)dictionary is tractable and well-posed (separable
NMF).

4 Dictionary-based decompositions lead to identifiability both for
matrices and tensors. We have proposed a simple alternating scheme
that works well in practice.

5 Another way to get identifiability is sparsity.
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Thank you for your attention!

Code and papers available from
https://sites.google.com/site/nicolasgillis
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