Updating tensor decompositions
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Tensors can change over time
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Tensors can change over time
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» Data only becomes available gradually

» The data is non-stationary

» The full tensor does not fit into memory
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Tensors can change over time

» Example: EEG data

New EEG samples are obtained
Old data becomes outdated

Test subjects are added/removed
Mobile EEG
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Recomputing the full decomposition can be infeasible or unnecessary
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» The new data arrives too fast
> The full tensor takes up too much memory
» We want to locally improve the accuracy of the decomposition
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Can tensor decompositions adapt to changes in the tensor?
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CPD updating

> A new slice M gets added to the tensor
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CPD updating

> A new slice M gets added to the tensor

» Factor matrix B obtains an extra column, b
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CPD updating

> A new slice M gets added to the tensor
» Factor matrix B obtains an extra column, b

» The original factor matrices A, B and C are updated
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CPD updating

v

A new slice M gets added to the tensor

» Factor matrix B obtains an extra column, b

v

The original factor matrices A, B and C are updated
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The algorithm should be fast, accurate and memory-efficient
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Existing algorithms are sequential
» Estimate b with its least squares solution:
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Existing algorithms are sequential

» Estimate b with its least squares solution:

[(CLdCold) * (AdgAod)|  (Cold ® Aoig) vec(M)

» Update A and C
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Existing algorithms are sequential

» Estimate b with its least squares solution:

[(C;rldcold) * (A;rldAOH)} (Cold © Acig) " vec(M)

» Update A and C
» Refine b:

new new

[(CleuCre) * (AleAnen)]| (Coew © Anen) vec(M)
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All-at-once CPD updating
Adapt batch NLS CPD algorithm to the updating context
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All-at-once CPD updating
Adapt batch NLS CPD algorithm to the updating context
» Replace old slices by an approximation (CPD, MLSVD ...)
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

> Replace old slices by an approximation (CPD, MLSVD ...)
> Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices
» Split the computation in parts depending on the old data and parts depending on
new slices
» Use the structured tensor framework for the old data
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

» Replace old slices by an approximation (CPD, MLSVD ...)

» Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices

» Apply Conjugate Gradients to solve the system JTJp = —g

» Forming and inverting JTJ is not needed
» Products of the form JTJx can be computed efficiently
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

» Replace old slices by an approximation (CPD, MLSVD ...)
» Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices
» Apply Conjugate Gradients to solve the system JTJp = —g
» Use block-Jacobi preconditioner M
» Left-multiply both sides of J7Jp = —g by M !
» Good choice of M improves convergence of CG algorithm
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

>

>

Replace old slices by an approximation (CPD, MLSVD ...)

Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices

Apply Conjugate Gradients to solve the system JTJp = —g
Use block-Jacobi preconditioner M
Limit number of NLS and CG iterations
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Numerous generalizations of the algorithm exist
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Numerous generalizations of the algorithm exist

» Applicable to (N — 1)-th order updates of Nth-order tensors in any number of
modes simultaneously
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> Rank changes are possible
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Numerous generalizations of the algorithm exist

» Applicable to (N — 1)-th order updates of Nth-order tensors in any number of
modes simultaneously

v

Truncated exponential windows are easily applied

v

Rank changes are possible

v

Extendable to structured or coupled CPDs
Weighted least squares (WLS) CPD updating

» CPD of weight tensor is updated
» This CPD is used in WLS update of the data tensor CPD
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Updating is both accurate and fast

8/12



Updating is both accurate and fast

» Model with slowly evolving second mode and 20dB SNR
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Updating is both accurate and fast

» Model with slowly evolving second mode and 20dB SNR
» Comparison of batch and updating methods

» Batch CPD-NLS and CPD-ALS (Sorber et al. 2013)
» PARAFAC-SDT and PARAFAC-RLST (Nion et al. 2009)
» CPD updating



Updating is both accurate and fast

» Model with slowly evolving second mode and 20dB SNR
» Comparison of batch and updating methods
» Mean errors of the CPD approximation
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Updating is both accurate and fast

v

Model with slowly evolving second mode and 20dB SNR
» Comparison of batch and updating methods

» Mean errors of the CPD approximation

CPU-time of the CPD approximation (ms)

v

R 2 3 4 5 6
Updating 60 81 104 140 169
NLS 2375 4464 2557 3563 5522
ALS 910 1222 1400 1401 2352
SDT 48 71 98 136 172

RLST 570 607 623 775 822



NLS updating enables real-time CPD applications
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NLS updating enables real-time CPD applications

» Direction-of-arrival estimation using a uniform rectangular array (URA)
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NLS updating enables real-time CPD applications

» Direction-of-arrival estimation using a uniform rectangular array (URA)

» Three moving sources, SNR 10dB
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NLS updating enables real-time CPD applications

» Direction-of-arrival estimation using a uniform rectangular array (URA)

» Three moving sources, SNR 10dB
» Azimuth and elevation angles of sources are recovered from CPD of data tensor
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NLS updating enables real-time CPD applications

Direction-of-arrival estimation using a uniform rectangular array (URA)

Three moving sources, SNR 10dB
Azimuth and elevation angles of sources are recovered from CPD of data tensor
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» NLS updating: 6-8ms per update
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NLS updating enables real-time CPD applications

100 7

Azim.

-90

100

Elev. |

» WLS NLS CPD updating
» Direction-of-arrival estimation with three moving sources
» Some sensors break down, leading to bad readings
» Less weight is given to readings of these sensors
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Main advantages of all-at once CPD updating
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Main advantages of all-at once CPD updating

» Fast and accurate
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Main advantages of all-at once CPD updating

» Fast and accurate

» Versatile
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Main advantages of all-at once CPD updating

» Fast and accurate
» Versatile

» Low memory requirements O(New slice)
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Improvements can still be made
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» Automatic rank-adaptation
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Improvements can still be made

» Automatic rank-adaptation
» Additionally track an MLSVD or higher-rank CPD of the tensor
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Improvements can still be made
» Automatic rank-adaptation

» Additionally track an MLSVD or higher-rank CPD of the tensor

» Compromise between storing full tensor and only CPD
» Track enough data for rank-increases
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Improvements can still be made

» Automatic rank-adaptation
» Additionally track an MLSVD or higher-rank CPD of the tensor
» Compromise between storing full tensor and only CPD
» Track enough data for rank-increases
» Countering numerical error accumulation
> Numerical error increases for all modes
> Statistical error decreases for non-updated modes

Noiseless case Noisy case (SNR 20dB)
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Further possibilities for updating algorithms

» Other decompositions (MLSVD, BTD)
» Different cost functions

» Tensor data changing in other ways
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Updating tensor decompositions
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