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Improved performance is achieved by
using more data or prior knowledge

"true system" generates data

prior knowledge: properties of the true system
(model class, noise distribution, . . . )

modeling: data + prior knowledge  model

objective:
I model = true system
I use the model for filtering, control, . . .
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Improved performance using more data
 consistent estimation

typical 1/
√

# of samples estimation error decay rate
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This talk is about improved performance
using extra prior knowledge

System identification’s view of prior knowledge

Linear algebra’s view of prior knowledge

Example: ultrasound imaging
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System identification aims to find
"best" model in given model class

given:
I data D
I model class M
I distance measure dist(D ,B)

find: model B̂, such that

dist(D ,B̂) = min
B∈M

dist(D ,B)

6 / 33



The prior knowledge is the
1. model class, 2. distance measure

1. "true system" B̄ belongs to M

2. dist(D ,B̄) is "small" (↔ noise model)
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Examples of prior knowledge

1. model class
I input variables — not restricted
I linear time-invariant (LTI), . . .

2. distance measures
I misfit (↔ measurement errors)
I latency (↔ process noise)

8 / 33



The more general the model class,
the weaker the prior knowledge

extreme cases
I all variables inputs  trivial model (no restriction)
I all variables outputs  autonomous model
I no "memory" (initial conditions)  static model
I autonomous static model  trivial model (B = {0})

hyper parameters
I number of inputs
I number of initial conditions (order)
I model structure
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The weaker the prior knowledge,
the larger the estimation error

example: noise filtering

order

1 2 3 4 5

e
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I true system B̄:
autonomous
LTI of order n

I measurement noise:
y = ȳ + ỹ , ȳ ∈ B̄

ỹ ∼ Normal(0,σ2I)
I estimation error:

e = ‖ȳ − ŷ‖
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Low-rank approximation:
estimation with a rank constraint

given:
I data D
I mapping S : D 7→ D ∈ Rm×n and r ≤min(m,n)
I matrix norm ‖ · ‖

find: approximation D̂ of D as a solution of

minimize over D̂
∥∥S (D)−S (D̂)

∥∥
subject to rank

(
S (D̂)

)
≤ r
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The prior knowledge is the
1. rank constraint, 2. matrix norm

1. "true data" D̄ is such that rank
(
S (D̄)

)
≤ r

2.
∥∥S (D̄)−S (D̂)

∥∥ is "small" (↔ noise on D̄)
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Example: Hankel matrix ↔ LTI model class

D =
(
y(1), . . . ,y(T )

)
— time series

Hankel matrix

S (D) =


y(1) y(2) · · · y(T −L + 1)

y(2) y(3) · · · y(T −L + 2)

y(3) y(4) · · · y(T −L + 3)
...

...
...

y(L) y(L + 1) · · · y(T )


rank constraint r ↔ model complexity ↔ order n
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Low-rank prior ↔ sparsity prior

low-rank matrix ↔ sparsity of the singular values

example:
I "time domain" dense
I "frequency domain" sparse

(sum of 6 damped sines)
I low-rank property:

rank
(
S (y)

)
= 12

for 12≤ L≤ T −13
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Response of n-th order autonomous LTI
system is constrained/structured/sparse

belongs to n-dimensional subspace

is linear combination of n signals

is parameterized by n parameters
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Optimal filtering is projection on a model

problem: optimal filtering with given model
I given: 1. noisy data y = ȳ + ỹ

2. model B̄, such that ȳ ∈ B̄ (prior knowledge)
I find: an estimate ŷ of ȳ

solution: project y on B̄ (`2-optimal approximation)

efficient recursive implementation for LTI systems
 Kalman filter

17 / 33



What if the model B̄ is unknown?

use "higher-order" prior: B̄ ∈M , with M given

classical definition of n-sparse signal
I y has n nonzero values

(we don’t know which ones)
I basis: unit vectors

n-th order autonomous LTI system’s response
I y is sum of n complex exponentials

(their frequencies and dampings are unknown)
I basis: damped complex exponentials
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The low-order LTI prior makes
ill-posed problems well-posed

noise filtering
I given: y = ȳ + ỹ , ỹ ∼ Normal(0,σ2I), and M
I find: an estimate ŷ of ȳ ∈ B̄ ∈M

forecasting
I given: "past" samples

(
y(−t), . . . ,y(0)

)
and M

I find: "future" samples
(
y(1), . . . ,y(t)

)
missing data estimation

I given: samples y(t), t ∈Tgiven and M
I find: missing samples y(t), t ∈Tgiven
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Noise filtering, B̄ autonomous LTI 2nd order

20 / 33



Heuristic: smooth the data by low-pass filter
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Optimal (Kalman) filtering requires a model
The best (but unrealistic) option is to use B̄
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Optimal filtering using identified model B̂,
with the 2nd order LTI model class prior
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High-resolution ultrasound imaging
requires data compression

sensor array (64 antennas)

high sampling rate (40MHz)

generates 2.5 GB / second
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Compression techniques based on skipping
samples require missing data estimation

a priori known property of the data:
joint sparsity in a known basis

the signals are band limited by the sensor

the sensor’s bandwidth is a priori known
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Joint-sparsity  low-rank

D — T ×N data matrix (T samples, N channels)

dj = cj1 expω1
+ · · ·+ cjr expωr — reduced Fourier basis

D = FC, where F is T × r and C is r ×N, therefore

rank(D)≤ r

27 / 33



The low-rank property allows
compression down to rN samples

ω1, . . .ωr a priori known =⇒ F is known

moreover, 1
N F is orthonormal

compression: transmit the rN coefficients

C =
1
N

F T D
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Extra prior: C is "close" to rank deficiency

quantify the distance to rank deficiency by

‖C‖∗ = sum of the singular values (nuclear norm)

sampling operator S(·) — select r ′N < rN samples

extra compression using the extra prior

minimize over C ‖C‖∗+ α‖S(X )−S(FC)‖
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Incomplete prior by tuning hyper-parameters

order selection (rank estimation)
I Akaike information criterion
I minimum description length
I . . .

Bayesian methods with parameterized prior

these methods use "hyper-prior knowledge"
hence "no free lunch"
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The prior knowledge, used in data modeling,
is often implicit, although it’s crucial

"classical" prior:
1. model class
2. noise distribution

low-rank approximation problem

connection to sparse estimation

32 / 33



Outlook

other types of prior
I nonnegativity
I . . .

related work
I regularization techniques
I Bayesian methods
I . . .

how to come up with prior knowledge?
I parameters tuning (hyper-prior)
I . . .
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