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Nonnegative Matrix Factorization (NMF)

Given a matrix M € Rixn and a factorization rank r < min(p, n), find
U € RP*"and V € R™" such that
min_[|M— UV|[z => (M- UV). (NMF)

U>0,v>0 —
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NMEF is a linear dimensionality reduction technique for nonnegative data

,
M(:,i) = > U(, k) V(k,i)  foralli.
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Nonnegative Matrix Factorization (NMF)

Given a matrix M € RP*" and a factorization rank r < min(p, n), find
U € RP*"and V € R™" such that

i — UV = —UV)2
S IM — UV|% ,ZJ;(M UV)3. (NMF)
r
M(:, i) ~ UG, k) V(k,i)  forall i,
~——

Why nonnegativity?
— Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation).

— Many applications. image processing, text mining, hyperspectral
unmixing, community detection, clustering, etc.



Example 1: Blind hyperspectral unmixing
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Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.
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Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels.



Linear mixing model
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Example 1: Blind hyperspectral unmixing with NMF
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Example 1: Blind hyperspectral unmixing with NMF
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Spectral signatures of each consitutive material

m Basis elements allow to recover the different endmembers: U > 0;



Example 1: Blind hyperspectral unmixing with NMF
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m Basis elements allow to recover the different endmembers: U > 0;

m Abundances of the endmembers in each pixel: V > 0.



Urban hyperspectral image
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Urban hyperspectral image

M. j) ~ U, k) V(. j)
N——

spectral signature

of jth pixel

Figure: Decomposition of the Urban dataset.
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Urban hyperspectral image

M, j) ~ UG, k) V(k,j)
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Example 2: topic recovery and document classification
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I

Sets of words found simultaneously in different texts

m Basis elements allow to recover the different topics;



Example 2: topic recovery and document classification
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Sets of words found simultaneously in different texts

m Basis elements allow to recover the different topics;
m Weights allow to assign each text to its corresponding topics.



NMF Algorithms

Given a matrix M € RTX” and a factorization rank r € N;

min M—UV|z =) (M- UV).
L | Iz ZJ:( )i

NMF is NP-hard (Vavasis, 2009).

(NMF)
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NMF Algorithms

Given a matrix M € RTX” and a factorization rank r € N;

min IM—UV|[F =) (M- UV). (NMF)
UeRT*" VeR*"

iy
NMF is NP-hard (Vavasis, 2009).

Standard framework:

0. Initialize (U, V). Then, alternatively update U and V:
1. Update V ~ argminy, |[|M — UX||% . (NNLS)
2. Update U ~ argminy, [|[M — YV|[7 . (NNLS)

Most NMF algorithms come with no guarantees (except convergence to
stationary points).

Solution is in general highly non-unique: indentifiability issues.
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NMF under the separability assumption

11



Separability Assumption

Separability of M: there exists an index set C and V > 0 with
M= M(,K)V, with || =r.
N——

M U VvV

Q
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Separability Assumption

Separability of M: there exists an index set C and V > 0 with
M= M(,K)V, with || =r.
N——

M

‘ ~ I
—~
[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization —
Provably, STOC 2012.
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Separability Assumption

Separability of M: there exists an index set C and V > 0 with
M= M(,K)V, with || =r.
N——

M V
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[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization —
Provably, STOC 2012.
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Applications

m In hyperspectral imaging, this is the pure-pixel assumption: for each
material, there is a ‘pure’ pixel containing only that material.

[M+14] Ma et al., A Signal Processing Perspective on Hyperspectral Unmixing: Insights
from Remote Sensing, |EEE Signal Processing Magazine 31(1):67-81, 2014.
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m In hyperspectral imaging, this is the pure-pixel assumption: for each
material, there is a ‘pure’ pixel containing only that material.
[M+14] Ma et al., A Signal Processing Perspective on Hyperspectral Unmixing: Insights
from Remote Sensing, |EEE Signal Processing Magazine 31(1):67-81, 2014.

» In document classification: for each topic, there is a ‘pure’ word used
only by that topic (an ‘anchor’ word).

[A+13] Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees,
ICML 2013.
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Applications

m In hyperspectral imaging, this is the pure-pixel assumption: for each
material, there is a ‘pure’ pixel containing only that material.
[M+14] Ma et al., A Signal Processing Perspective on Hyperspectral Unmixing: Insights

from Remote Sensing, |EEE Signal Processing Magazine 31(1):67-81, 2014.
» In document classification: for each topic, there is a ‘pure’ word used

only by that topic (an ‘anchor’ word).
[A+13] Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees,

ICML 2013.
= Time-resolved Raman spectra analysis: each substance has a peak in

its spectrum while the other spectra are (close) to zero.

[L+16] Luce et al., Using Separable Nonnegative Matrix Factorization for the Analysis of
Time-Resolved Raman Spectra, Appl Spectrosc. 2016.
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» In document classification: for each topic, there is a ‘pure’ word used
only by that topic (an ‘anchor’ word).
[A+13] Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees,
ICML 2013.

= Time-resolved Raman spectra analysis: each substance has a peak in

its spectrum while the other spectra are (close) to zero.

[L+16] Luce et al., Using Separable Nonnegative Matrix Factorization for the Analysis of
Time-Resolved Raman Spectra, Appl Spectrosc. 2016.

= Others: video summarization, foreground-background separation.

[ESV12] Elhamifar, Sapiro, Vidal, See all by looking at a few: Sparse modeling for finding
representative objects, CVPR 2012.

[KSK13] Kumar, Sindhwani, Near-separable Non-negative Matrix Factorization with £1-
and Bregman Loss Functions, SIAM data mining 2015.

13



Combinatorial formulation for separable NMF

We want to find the index set I with |K| = r such that

M = M(:K)V.
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Combinatorial formulation for separable NMF

We want to find the index set K with |K| = r such that

M = M(:K)V.

This is equivalent to finding X € R"*" with r non-zero rows such that

M = MX.

A combinatorial formulation:
m)gn || X|lrow,0 such that M = MX or |[|[M— MX]|| <e.

How to make X row sparse?
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A Linear Optimization Model
min  trace(X) = || diag(X)||1
XERQX"
such that ||M — MX]|| <,
X,‘J' < X,‘,' <1 for all l',j.
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A Linear Optimization Model

min  trace(X) = || diag(X)||1
XeRyX"

such that ||M — MX]|| <,
Xij < Xji < 1foralli,j.

Robustness: noise < O (k(U)™!) = error < O (&) [GL14].

[GL14] G., Luce, Robust Near-Separable NMF Using Linear Optimization, JMLR 2014.
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A Linear Optimization Model
min
XeRyX"
such that  ||M — MX|| <,

Robustness: noise < O (k(U)™!) = error < O (&) [GL14].

This model is an improvement over [B+12]: more robust and detects the
factorization rank r automatically.

[GL14] G., Luce, Robust Near-Separable NMF Using Linear Optimization, JMLR 2014.
[B+12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with LPs, NIPS 2012.
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A Linear Optimization Model

min
nxXn
XER?

such that  ||M — MX|| <,

Robustness: noise < O (k(U)™!) = error < O (&) [GL14].

This model is an improvement over [B+12]: more robust and detects the
factorization rank r automatically.

It is equivalent [GL16] to using as a convex
surrogate for || X||row,0 [E+12].

[GL14] G., Luce, Robust Near-Separable NMF Using Linear Optimization, JMLR 2014.

[B+12] Bittorf, Recht, Ré, Tropp, Factoring nonnegative matrices with LPs, NIPS 2012.
[E+12] Esser et al., A convex model for NMF and dimensionality reduction on physical space,
IEEE Trans. Image Processing, 2012.

[GL16] G. and Luce, A Fast Gradient Method for Nonnegative Sparse Regression with Self
Dictionary, IEEE Trans. Image Processing, 2018.
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Practical Model and Algorithm
min [|M — MX|[% + ptr(X),

Q={XecR" | X; <1,wXj < wX;Vi,j}.

16



Practical Model and Algorithm
min [|M — MX|[% + ptr(X),

Q= {X e R™" ‘ Xi <1, W,'X,'J' < VI/J'Xf;Vi,j}.
We used a fast gradient method (optimal 1st order):

1 Choose an initial point X(© Y = X(©) «; € (0,1).
2 k=1,2,...

1 XKW =7Pq (Y- L1VF(Y)).
2 Y = X048, (XK — x(k=1),

ozk(lfak)

where =
ﬂk ai+04k+1

with agyq1 > 0 t.q. O‘i+1 =(1- ak+1)ai.

[GL16] G. and Luce, A Fast Gradient Method for Nonnegative Sparse Regression with Self
Dictionary, IEEE Trans. Image Processing, 2018.
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Practical Model and Algorithm
min [|M — MX|[% + ptr(X),

Q= {X e R™" ‘ Xi <1, W,'X,'J' < VI/J'Xf;Vi,j}.
We used a fast gradient method (optimal 1st order):

1 Choose an initial point X(© Y = X(©) «; € (0,1).
2 k=1,2,...

1 X% = o (¥ ~191(Y)).
2 Y = XW4p, (X0 - x(k-1)y,

ozk(lfak)

where =
ﬂk ai+04k+1

with agyq1 > 0 t.q. O‘i+1 =(1- ak+1)aﬁ.
Projection onto Q can be done effectively in O(n?log(n)) operations.

The total computational cost is O(pn?) operations.

[GL16] G. and Luce, A Fast Gradient Method for Nonnegative Sparse Regression with Self
Dictionary, IEEE Trans. Image Processing, 2018.
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Hyperspectral unmixing

r==6 r=38
Time (s.) | Rel. err. (%) || Time (s.) | Rel. err. (%)

VCA 1.02 18.05 1.05 22.68
VCA-500 0.03 7.19 0.09 7.25
SPA 0.26 9.58 0.32 9.45
SPA-500 <0.01 10.05 <0.01 8.86
SNPA 13.60 9.63 23.02 5.64
SNPA-500 0.15 10.05 0.25 8.86
XRAY 28.17 7.50 95.34 6.82
XRAY-500 0.15 8.07 0.28 7.36
H2NMF 12.20 5.81 14.92 5.47
H2NMF-500 0.27 5.87 0.37 5.68
FGNSR-500 40.11 5.07 39.49 4.08

Table: Numerical results for the Urban HSI (the best result is highlighted in bold).
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Figure: Abundance maps extracted by FGNSR-500.
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Why only self-dictionary?
We can generalize the previous model to any dictionary:
M =~ D(,K)V,
=U

where K selects atoms in the dictionary D € RP*9 (e.g., a hyperspectral
library).
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Why only self-dictionary?
We can generalize the previous model to any dictionary:
M =~ D(,K)V,
~——
=U
where K selects atoms in the dictionary D € RP*9 (e.g., a hyperspectral

library). As before, this is equivalent to

m)gn || X|lrow,0 such that M = DX,

for which there exists convex relaxations, e.g., replace || X||row,0 With

d .
1 X1l1,q = 22721 [1X(2)llg-
Again, this is computationally expensive for d large (d? variables).

[ESV12] Elhamifar, Sapiro, Vidal, See all by looking at a few: Sparse modeling for
finding representative objects, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012.
[E+12] Esser et al., A convex model for nonnegative matrix factorization and
dimensionality reduction on physical space, IEEE Trans. Image Process. 2012.
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A combinatorial model and algorithm

We want to solve

%io IM = D(;,K)V||# suchthat |K|=rand V > 0.
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A combinatorial model and algorithm
We want to solve
%iv IIM — D(:,K)V||2 suchthat |K|=rand V >0.

Introduce U and solve

min [[M — UV|[+6||U — D(:,K)||# such that |K|=rand V > 0.

via alternating optimization:
Optimal update for each variable U, V and K.

Computationally cheap, O(pnr) if using a first-order method to
update U and V.

In practice, it is always able to improve the provided initial solution.
X No optimality/recovery guarantee.
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Numerical results for the Urban data set

r==6 r=2=8

Time (s.) | Rel. err. | Time (s.) | Rel. err.
RAND-be 0.00 13.77 0.00 5.54
d-RAND-be || 22.01 (11) 4.36 36.18 (19) 4.16
SPA 0.30 9.58 0.30 9.45
d-SPA 2437 (13) | 4.67 | 28.61(14) | 4.62
SNPA 24.34 9.63 36.72 5.64
d-SNPA || 23.04 (13) | 4.94 | 27.94 (13)| 3.97
H2NMF 19.02 5.81 22.35 5.47
d-H2NMF || 26.66 (15) | 4.05 | 28.92 (14) | 4.24
FGNSR-100 2.73 5.58 2.55 4.62
d-FGNSR-100 || 26.72 (14) 4.36 20.81 (8) 4.04
FGNSR-500 40.11 5.07 39.49 4.08
d-FGNSR-500 || 25.07 (13) 4.40 26.83 (12) 413
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Figure: Abundance maps extracted by d-H2NMF.
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Dictionary-based decompositions for
tensors
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CPD and the problem of interpretability

- ﬁl

e

T = (A ® B ® (C) Ir
T = [A B . (]

CPD: if unique, estimated factors should match true factors.
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_ D- e

T = ( ® B ® C)
7T = B (]

CPD: if unique, estimated factors should match true factors.

Interpretability problems

X Presence of noise deteriorates solutions.

X Uniqueness may not be ensured.

X Finding the best low-rank approximation is NP-hard in general.

Consequence: results may not have any physical meaning.
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CPD and the problem of interpretability

_ D- e

T = ( ® B ® C)
7T = B (]

CPD: if unique, estimated factors should match true factors.

Interpretability problems

X Presence of noise deteriorates solutions.

X Uniqueness may not be ensured.

X Finding the best low-rank approximation is NP-hard in general.

Consequence: results may not have any physical meaning.

Using dictionaries guarantees interpretability.
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Dictionaries in signal processing (in a nutshell)

M

M=DX, [X|p<6

i

Fixed Dictionary (Sparse Coding) Learnt Dictionary (DL,SCA)

minimize Y. [|m; — D(:, K;)x; |3 minimize 3" [[m; — Dx;||3 + Aljx;||1

over K;, ;.
[Donoho 03, Tropp 04]

over D, x;.

Algorithms: [Olshausen 97, Elad 06,

Mairal 10],

m Other forms of regularization (low rank, group sparsity, separability,
nonnegativity, tensor structure).

m Dictionary learning and sparse coding are among the key topics in
both signal processing and machine learning.

25



Sparse coding for tensors?

Put the constraints on A.

T = (D(;,K) ® B® C) Ig

where || = R.
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Sparse coding for tensors?

Put the constraints on A.

T = (D(;,K) ® B® C) Ig

where || = R.
Generalizes easily to any order.

Alternating algorithms can be adapted easily. Low memory
requirement.

Can be adapted for multiple atom selection (future work).
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Theoretical gain

Theorem (Matrix factorization is identifiable)

If spark(D) > R, R = rank(M), |K| = R, and if there exists
M = D(:, K)B, then this factorization is essentially unique.
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Theoretical gain

Theorem (Matrix factorization is identifiable)

If spark(D) > R, R = rank(M), |K| = R, and if there exists
M = D(:, K)B, then this factorization is essentially unique.

Theorem (Tensor factorization is often identifiable)

If spark(D) > R, R = rank(M), |KC| = R, and if there exists
T = (D(:;,K) ® B® C) IR, then the following holds:

(B ® C) is full rank = the factorization is unique.

Theorem (3d order tensor best approximation exists)
If spark(D) > R, R = rank(M) and #K = R, then the minimum of

f(K,B,C) = ||T — (D(:,K) ® B® C) Zg||7

over the variables (K, B, C) always exists.
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Yet another alternating algorithm

i — (A®B®C)Zg|# + \|A - D(;,K)| 2.
Jmin [T~ (A®B@C)Zgl? + A - D[
Iterate until convergence:

1 Factors are updated by any well-known algorithm (ALS,
gradient-based methods. . .).
2 K is obtained by finding the closest atom in D for each column of A.

3 Increase X if necessary.

28



Yet another alternating algorithm

i - (A®B Zr|? A —D(: 2.
Amin T —(A®B®C)Igr|F + Al G K)E

Iterate until convergence:

1 Factors are updated by any well-known algorithm (ALS,
gradient-based methods. . .).

2 K is obtained by finding the closest atom in D for each column of A.

3 Increase X if necessary.

Tricks:
m To impose that no atom is selected twice, solve an assignment
problem.
m If factors are constrained, simply use any off-the-shelf solver.
m Parameter A may be tuned for naive flexible dictionary constraint.

[CG18] Cohen, G., Dictionary-based Tensor Canonical Polyadic Decomposition, IEEE
Trans. on Signal Processing, 2018.



Numerical results: ALS vs. Dictionary-ALS (MPALS)

A — D(:, K), B, € randomly generated, D ill-conditioned,
SNR~11.5dB, and use C « C(©) (pl + 0z )1R><R) (ill-conditioned).

0.3

T —% ALS
0257 —+—MPALS

o
N

0.1

Relative MSE on A
(]
o




Numerical results: ALS vs. Dictionary-ALS (MPALS)

A — D(:, K), B, € randomly generated, D ill-conditioned,

SNR~11.5dB, and use C +~ C(©) (pl + 0z )1R><R) (ill-conditioned).

0.3

T —% ALS
0257 —+—MPALS

o
N

0.1

Relative MSE on A
(]
o

We need real-world tensor data to validate MPALS further.
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Extensions to multiple dictionaries

A = [Di(:;,K1),...,Dn(;, )] with d; < |K|; < diand 33, K| = R.

Sources q; Libraries Dy

><M
;\.ﬁ

(
I

—

[CG18] Cohen, G., Spectral Unmixing with Multiple Dictionaries, IEEE Geoscience and
Remote Sensing Letters, 2018.

o/
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| ow-rank
sparse component analysis



Problem formulation: Low-rank SCA

Decompose a low rank matrix/tensor with known coefficients sparsity.

M=AB, AcRR BeRR*"
LRSCA : ' rank(M) = rank(A) = R,
IB(:, /)]0 < k <R.
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Problem formulation: Low-rank SCA

Decompose a low rank matrix/tensor with known coefficients sparsity.

M=AB, AcRR BeRR*"
LRSCA : ' rank(M) = rank(A) = R,
IB(:,1)|lo < k <R.
Many existing theoretical results (see e.g. [Gribonval 16]) and algorithms
(Dictionary Learning). But:
X Not many results specific to the low-rank case
X Only two deterministic identifiability results [Elad 06, Georgiev 05]

X Not much in the tensor case except ¢1 regularization?
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Geometric intuition

Example: d =3,R=3,k=2,n=6.

e data points
o first decomposition
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Example: d =3,R=3,k=2,n=6.

e data points
o first decomposition
o second decomposition
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Our identifiability results

Theorem

Let M = AB satisfy the LRSCA model. The factorization (A, B) is
essentially unique if on each hyperplane spanned by all but one column of
A, there are {R(R 2)J + 1 data points with spark R.

[CG18] Cohen, G., Identifiability of Low-Rank Sparse Component Analysis,
arXiv:1808.08765.
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For k = R — 1, this requires R® — 2R? 4+ R data points and it is tight
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It is tight up to constant factors for any k = SR for any fixed
constant .

[CG18] Cohen, G., Identifiability of Low-Rank Sparse Component Analysis,
arXiv:1808.08765.
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Our identifiability results

Theorem

Let M = AB satisfy the LRSCA model. The factorization (A, B) is
essentially unique if on each hyperplane spanned by all but one column of
A, there are LR(R 2)J + 1 data points with spark R.

For k = R — 1, this requires R® — 2R? 4+ R data points and it is tight
up to the constant R (counter examples for any n = R® — 2R?).

For k = 1, this requires R data points and it is tight (one on each
intersection of R — 1 hyperplanes).

It is tight up to constant factors for any k = SR for any fixed
constant .

Nonnegativity helps both in theory and in practice: further work.

[CG18] Cohen, G., Identifiability of Low-Rank Sparse Component Analysis,
arXiv:1808.08765.
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Geometric intuition

Example: d =3,R=3,k=2,n=4+3+2.

[ ]
o

data points
unique decomposition
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Sparsity in action
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Sparsity in action

Spectral unmixing, R =6,k =2

0 100 200 o 100 200 ) 100 200 0 100 200 0 100 200 0 100 200

v Sparsity is another way to obtain identifiability for matrix
decompositions.
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v Sparsity is another way to obtain identifiability for matrix
decompositions.

V" Need to explore the extension to tensors.
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Sparsity in action

Spectral unmixing, R =6,k =2

v Sparsity is another way to obtain identifiability for matrix
decompositions.

V" Need to explore the extension to tensors.

X Hard combinatorial problems to solve. ..
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Take-home messages

1 NMF is a useful and widely used linear model in data analysis and
machine learning.
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3 NMF with (self-)dictionary is tractable and well-posed (separable
NMF).

4 Dictionary-based decompositions lead to identifiability both for

matrices and tensors. We have proposed a simple alternating scheme
that works well in practice.

38



Take-home messages

1 NMF is a useful and widely used linear model in data analysis and
machine learning.

2 NMEF is difficult (NP-hard) and ill-posed (non-uniqueness).

3 NMF with (self-)dictionary is tractable and well-posed (separable
NMF).

4 Dictionary-based decompositions lead to identifiability both for
matrices and tensors. We have proposed a simple alternating scheme
that works well in practice.

5 Another way to get identifiability is sparsity.
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Thank you for your attention!

Code and papers available from
https://sites.google.com/site/nicolasgillis
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