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A second-order optimization framework for the computation of tensor decompositions

min −
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2

F

subject to parametric, box or soft constraints
coupling constraints
symmetry constraints
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Alternating Least Squares versus Gauss–Newton: exact case
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Rank-10 tensor of size 250× 250× 250, correlated factor vectors.
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Alternating Least Squares versus Gauss–Newton: noisy case
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Advantages of second-order information for tensor computations

Good convergence properties
Global convergence; up to quadratic convergence near local optima

Robust to initialization
Often few initializations required

Less susceptible to swamps

Easy to incorporate constraints
E.g., parametric, box and soft constraints

All multilinear structure can be exploited

Same asymptotic complexity as ALS
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Intermezzo: local approximation using a Taylor series expansion

1 1 1 1

f (x) ≈ f (1)

≈ f (1) +
df (1)

dx
(x − 1)

≈ f (1) +
df (1)

dx
(x − 1) +

1

2

d2f (1)

dx2
(x − 1)2
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Newton approach: local second-order approximation of objective function

Instead of using the nonlinear least squares objective function

min
z

f (z) with f (z) =
1

2
||m(z)− t||2F ,

we solve

min
pk

f̃ (pk) with f̃ (pk) ≈ f (zk) + pT
k · ∇zf (zk)︸ ︷︷ ︸

gk

+
1

2
pT
k · ∇2

zf (zk)︸ ︷︷ ︸
Hk

· pk

and pk can be found from

Hkpk = −gk
The variables are then updated as

zk+1 = zk + αkpk

The model is m(z) = vec (JA,B,CK) with variables z =
[
vec (A) ; vec (B) ; vec (C)

]
and t = vec (T ).
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Quasi-Newton and Gauss–Newton

Unfortunately, computing the Hessian Hk is

expensive to compute

not always positive semidefinite

Therefore, Hk is approximated:

for gradient or steepest descent, Hk = I

for NCG, Hk = I− γpk−1δT

for BFGS, Hk = Hk−1 + Uk−1 + Vk−1

for Gauss–Newton (GN), Hk = JT
kJk

for Levenberg–Marquardt (LM), Hk = JT
kJk + λI

We focus on GN in this talk
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Direct and iterative methods for solving Hp = −g

Using direct algorithms

Pseudoinversion
p = −H†g

LDL factorization
p = −L−TD†L−1g

Using conjugate gradients (inexact)

Iterative solution using only products of form

yl = Hxl−1

Preconditioning techniques
M−1Hp = −M−1g

LDL factorization: H = LDLT with L lower triangular and D diagonal.
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Direct and iterative methods for solving Hp = −g
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Inexact Gauss–Newton for CPD

Goal: find best variables z =
[
vec (A) ; vec (B) ; vec (C)

]
via

min
z

1

2
||JA,B,CK− T ||2F

Starting from z0, each iteration we

solve
Hkpk = −gk

for pk with Hk = JT
kJk

and update
zk = zk−1 + αkpk
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Inexact Gauss–Newton for CPD

Solve system Hp = −g with CG using only Hessian-vector products

yl = JTJxl−1

starting from x0.
Partition all computed variables according to factor matrices:

g =
[
gA; gB; gC

]
p =

[
pA;pB;pC

]
J =

[
JA, JB, JC

]
x =

[
xA; xB; xC

]
y =

[
yA; yB; yC

]
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Inexact Gauss–Newton for CPD

((C�B)⊗ II )
T ((C�B)⊗ II )

JT
CJA

vec (PA)

·

vec (GB)

=

H · p = −g
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Inexact Gauss–Newton for CPD

Gradient is computed using matricized tensor times Khatri–Rao product (mtkrprod)
on residual R = JA,B,CK− T

gA = vec
(
R(1)(C�B)

)
gB = vec

(
R(2)(C�A)

)
gC = vec

(
R(3)(B�A)

)
Gramian-vector product y = JTJx is computed as

yA = JT
AJAxA + JT

AJBxB + JT
AJCxC

and so on for yB and yC, and

JT
AJAxA = vec (XAW) with W = (CTC) ∗ (BTB)

JT
AJBxB = vec (AW) with W = (CTC) ∗ (XT

BB)

JT
AJCxC = vec (AW) with W = (XT

CC) ∗ (BTB)
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Parametric constraints

Each factor matrix, e.g., A, is a function of some underlying variable z.

Nonnegativity by squaring
A = Z ∗ Z

Normalized matrix

air = zir/

√∑
k

z2kr

Polynomial constraint

air = z0r + z1r ti + z2r t
2
i + . . .+ zdr t

d
i

or in matrix form A = MZ with

air =
[
1 ti t2i . . . tdi

]︸ ︷︷ ︸
M(i ,:)

[
z0r z1r z2r . . . zdr

]T︸ ︷︷ ︸
zTr

Hankel structure
air = zi+r−1
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Parametric constraints

Optimize w.r.t. underlying variables z = [α;β;γ] instead of factor matrices A,B,C

JT
α

0

HJT
z

Jα

·

JT
γ

=

JT
zJz −gp· · · = ·
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Example: nonnegativity constraint using squared variables

Suppose A = D ∗D, i.e., α = vec (D), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (2D ∗ GA)

the Gramian-vector product w.r.t. α is computed as

X̃A = 2D ∗ Xα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = 2D ∗ ỸA
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Example: polynomial constraints

Suppose A = MQ, i.e., α = vec (Q), then

the gradient w.r.t. α is computed as

JT
αvec (GA) = vec (MTGA)

the Gramian-vector product w.r.t. α is computed as

X̃A = MXα

vec
(
ỸA

)
= HAAvec

(
X̃A

)
+HABvec (XB) + HACvec (XC)

Yα = MTỸA
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Active set methods for bound constraints

min
z

1

2
||JA,B,CK− T ||2F subject to l ≤ z ≤ u

Define the active set A and the inactive set I and partition accordingly

A = {i | li = zi or zi = ui},
I = {i | li < zi and zi < ui},

The step p is then computed from

H

[
p̃I
0

]
= −

[
gI
0

]
p̃A = −gA.

and

pi =


li − zi if zi + p̃i ≤ li

ui − zi if zi + p̃i ≥ ui

p̃i otherwise
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Symmetry constraints

min
z

1

2
||JA,A,CK− T ||2F

I

0

· =

· =

sum blocks
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Coupling constraints

Two tensors T1 and T2 can be factorized jointly using

min
z

ω1

2
||JA,B,CK− T1||2F +

ω2

2
||JD,E,FK− T2||2F

The factorizations can be coupled by

coupling factor matrices, e.g., A = D

partial coupling, e.g., A =
[
a1 a2 a3

]
and D =

[
a1 a2 d3

]
coupling through variables A = h1(α) and D = h2(α)

21



Coupling constraints: coupled tensor matrix factorization example

min
z

ω1

2
||JA,B,CK− T ||2F +

ω2

2
||CDT −M||2F

+ · +=

ω1H1( + ω2H2 ) · p = −ω1g1( − ω2g2 )

0

Soft coupling constraints can be handled similarly.
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Multigrid sampling and coupled decompositions

Approximate a function h(x , y) by

h̃(x , y) =
3∑

r=1

ar (x)br (y)

using two noisy measurements H1 and H2 on two different grids

H1 H2
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Multigrid sampling and coupled decompositions

Perform coupled decomposition of H1 and H2 with additional polynomial constraints:

H1 ≈ ABT H2 ≈ CDT

with

A = M1Q1 B = M1Q2

C = M2Q1 D = M2Q2

by solving the optimization problem

min
Q1,Q2

ω1

2 · Ω
||H1 − ABT||2F +

ω2

2 · Ω
||H2 − CDT||2F

subject to A = M1Q1, B = M1Q2, C = M2Q1, D = M2Q2

M1 and M2 are (known) evaluated basis functions. Ω is a normalization factor.
24



Multigrid sampling and coupled decompositions

Implementation using Tensorlab 4.0 syntax

model.variables.Q1 = rand(5,3);

model.variables.Q2 = rand(5,3);

model.factors.A = {’Q1’, struct_matvec(M1)};

model.factors.B = {’Q2’, struct_matvec(M1)};

model.factors.C = {’Q1’, struct_matvec(M2)};

model.factors.D = {’Q2’, struct_matvec(M2)};

model.factorizations.H1.data = H1;

model.factorizations.H1.cpd = {’A’, ’B’};

model.factorizations.H1.weight = omega1;

model.factorizations.H2.data = H2;

model.factorizations.H2.cpd = {’C’, ’D’};

model.factorizations.H2.weight = omega2;

sol = sdf_nls(model, ’CGMaxIter’, 50);
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Multigrid sampling and coupled decompositions
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error E
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Conclusion

Second-order algorithms such as (inexact) Gauss–Newton are well suited for coupled
and constrained tensor decomposition thanks to

favorable convergence properties, and

the possibility to exploit multilinear structure.

For more information, software and tutorials, see

book chapter on “Numerical optimization-based algorithms for data fusion”

Tensorlab (www.tensorlab.net)

user guide (www.tensorlab.net/doc)

demos (www.tensorlab.net/demos)
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