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If you would like to turn it off, go to the Face Recognition tab in Settings.
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EigenFaces is a simple matrix-based method for face recognition

M = B
C

vectorize

PCA basis

coefficients

Each (vectorized) image can be expressed as a linear combination of the PCA basis

Hence, face recognition reduces to solving a linear system of equations:

d(new) = Bc(new)

and comparing c(new) with the rows of C to find the closest match and use the
corresponding label.
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However, face recognition is inherently a higher-order problem due to variations in
illumination, pose, facial geometry, expression, etc.

different
illuminations

different
persons
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While matrix-based methods such as EigenFaces are limited to single-mode variations,
tensors can explicitly accommodate for the higher-order nature of facial images

image

vectorize

pixels × persons × illumination

stack
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Additionally, tensor tools are typically highly interpretable in contrast to nonlinear models
such as neural nets which are highly uninterpretable and often complex
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While in EigenFaces we compute a PCA (∼SVD), here we compute a multilinear SVD,
allowing us to exploit the higher-order nature of the problem

T =

Ui

Upx
UpS

T ≈ S ·1 Upx ·2 Up ·3 Ui
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Every vectorized facial image can then be expressed as a linear system with a rank-1 (or,
in general, a low-rank) structured solution, which is the topic of this presentation!

= Upx
S

d = (S ·1 Upx) ·2 cT
p ·3 cT

i

l

d = (UpxS(1))(ci⊗ cp)
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What to expect?

Definitions and links

Uniqueness and algorithms

Various applications
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We consider a linear system of equations with a CPD-constrained solution

A

x

=

b

with x = vec
(q

U(1),U(2), · · · ,U(N)
y)

Evidently, one can also consider other decompositions such as the multilinear SVD,
tensor trains (TTs) and hierarchical Tucker (hT) models.

TTs and hT models are popular in tensor-based scientific computing
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An LS-CPD can be interpreted as a multilinear system of equations.

⊗ =

A(x⊗ y) = b

=

A ·2 yT ·3 xT = b

A equals the mode-1 unfolding of A denoted by A(1). Remember: (A ·n B)(n) = BA(n).
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Multilinear systems are a generalization of linear systems in a similar way
as tensor decompositions are a generalization of matrix decompositions

= + · · ·+

Matrix decomposition

=

Linear system

= + · · ·+

Tensor decomposition

=

Multilinear system
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Link with compressed sensing

If A is diagonal and binary, LS-CPD reduces to:

B = D∗
r

U(1),U(2) · · · ,U(N)
z

with vec (B) = b

vec (D) = diag (A)

Although only a limited number of entries of b are known, b can be fully determined
by computing the CPD.
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Definitions and links

Uniqueness and algorithms

Various applications
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For generic uniqueness, we need at least as many equations as free variables
(compensated for scaling).

A

x

=

b

Lemma. Let A be a generic M × K matrix with K = I1 · · · IN . Define b = Avec(X0)
with X0 a I1 × · · · × IN tensor with rank less than or equal to R. In that case, the
solution vector x is unique if M ≥ (I1 + · · ·+ IN︸ ︷︷ ︸

free variables

−N + 1︸ ︷︷ ︸
scaling

)R + 1.

Generic uniqueness means that we have uniqueness with probability one when the en-
tries of A are drawn from absolutely continuous probability density functions.
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Algebraic method to solve LS-CPDs when considering a rank-1 structure.

We use the well-known fact that:

rank (X ) = 1 ⇐⇒ rank
(
X(n)

)
= R = 1, for 1 ≤ n ≤ N. (1) (1)

In this particular case a solution x for LS-CPD is also a solution of the relaxed problem:

Ax = b with x = vec (X ) , where X satisfies (1)

and vice versa.
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Hence, we can compute a solution for LS-CPD algebraically in two steps.

1. Solve the relaxed problem to recover X
2. and compute the (exact) rank-1 CPD of X .

In the trivial case, null
([

A b
])

= 1, allowing one to solve
the relaxed problem by ignoring the multilinear structure.

If null
([

A b
])
> 1, one can recast the relaxed problem

to the trivial case and solve an LS-CPD.
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Nonlinear least-squares algorithm to solve LS-CPDs

Suppose we have a LS-CPD of the form (with A(1) = A):

A(x⊗ y) = b ↔ A ·2 yT ·3 xT = b.

Then we minimize:

min
x,y

1

2
||A ·2 yT ·3 xT − b||2F

Then, use the optimization framework from Nico Vervliet’s talk.
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Optimization-based framework to solve LS-CPDs when considering low-rank structure.

Input: A, b, and {U(n)}Nn=1

Output: {U(n)}Nn=1

while not converged do
Compute gradient g.
Use PCG to solve Hp = −g for p using Gramian-vector products using a

(block)-Jacobi preconditioner.
Update U(n), for 1 ≤ n ≤ N, using dogleg trust region from p, g, and function

evaluation.

LS-CPD using Gauss–Newton with dogleg trust region
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The naive method fails for an underdetermined LS-CPD while the NLS and algebraic
method both perform well.

8 27
10−16

101

Algebraic method
Naive method
NLS method

Number of equations M

Relative error
on the solution

NLS typically needs many random initializations when M is close to M(min).

N = 3, I = 3,R = 1,K = 27,M(min) = 8
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By starting the NLS algorithm from the algebraic solution, fewer iterations are needed to
achieve convergence.

1 9 15
10−20

100
random initialization

algebraic initialization

Iterations

Relative function value

10 30
8

19

Signal-to-noise ratio (dB)

Iterations

Importantly, the algebraic method can still find a solution in the noisy case, but the
accuracy is typically low.

N = 3, I = 4,R = 1,K = 64,M = 60
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Complexity analysis teaches us the importance of exploiting coefficient structure

Calls per iteration Complexity

Objective function 1 + itTR O(MRIN)
Jacobian 1 O(MRNIN)
Gradient 1 O(MRNI )
Gramian-vector itCG O(MRNI )

The per-iteration complexity of the NLS algorithm is dominated by the computation of
the Jacobian.

Assume all dimensions are equal to I .
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Definitions and links

Uniqueness and algorithms

Various applications

23



The power of the LS-CPD framework is in its wide applicibality

Biomedical signal processing Array processing & Telecom

Computer vision System identification

Large-scale problems

Tensor algebra
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Quick recap of the face recognition problem

Tensorize (labeled) dataset into T

Compute multilinear SVD of

Every image admits

Hence, for a new image we solve

and we compare the estimate of c
(new)
p with the rows of Up

to find the closest match and use the corresponding label.
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We use the extended Yale B dataset to illustrate the LS-CPD-based approach

37 persons
64 illuminations
51 × 58 image

After preprocessing, we obtain a tensor of size 2958× 36× 57

We use Tensorlab for all computations in matlab

Details can be found in [Boussé et al., 2017d]
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We correctly classify a known person even though the image is almost completely dark

ReconstructedGiven Match
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The multilinear SVD model generalizes quite well for a new person using only one image
with a neutral illumination

Given Reconstructed
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We correctly classify the new person using a different illumination

ReconstructedGiven Best match Second match
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LS-CPD-based face recognition enables better recognition rates (%) than a matrix and
another tensor-based method

EigenFaces TensorFaces LS-CPD method

Accuracy 93.3 93.5 95.7
Precision 90.6 94.4 96.6
Recall 88.4 90.9 95.8

Time (s) of PCA/MLSVD 2.97 3.29 3.29
Time of recognition 0.004 0.135 0.097

Precision: What proportion of positive identifications was actually correct?
Recall: What proportion of actual positives was identified correctly?
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The LS-CPD framework offers a tensor-based classification methodology with many
possible applications

Obtain a (labeled) tensor T in some way

Use the MLSVD model T = S ·1 U1 ·2 U2 ·3 U3

Every mode-1 fiber satisfies t = (U1S(2))(c3⊗ c2)

Hence, for a new fiber we solve

t(new) = (U1S(2))(c
(new)
3 ⊗ c

(new)
2 )

and compare the coefficient vector of interest with the rows of the corresponding factor
matrix, using the corresponding label to classify the new fiber.

Biomedical examples, see [Boussé et al., 2017c; Van Eyndhoven et al., 2018]
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The optimization-based method exactly reconstructs a rational solution vector in the
noiseless case.

original function

improving accuracy

rank-1 model rank-2 model rank-3 model

The exact rank is known for various cases such as exponential polynomials, rational
functions, and periodic functions.

In general, smooth signals can often be well approximated by a low-rank tensor model.

[Boussé et al., 2017b,a; Debals et al., 2016; De Lathauwer, 2011; Grasedyck, 2010;
Grasedyck et al., 2013; Khoromskij, 2011]
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The construction of a tensor with particular multilinear singular values can be written as
a LS-CPD.

Consider an all-orthogonal tensor T ∈ RI×J×K with multilinear singular values σ(n),
for 1 ≤ n ≤ 3, or, equivalently, one can write:

T(n)T
T

(n) = Σ(n) with Σ(n) = diag
(
σ(n)

)
for 1 ≤ n ≤ 3.

By taking n = 1 and exploiting symmetry, one obtains:∑
j ,k

tijktijk =
(
σ
(1)
i

)2
, for 1 ≤ i ≤ I ,

∑
j ,k

ti1jkti2jk = 0, for 1 ≤ i1 < i2 ≤ I ,

and similarly for n = 2 and 3.
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The construction of a tensor with particular multilinear singular values can be written as
a LS-CPD.

More compactly, one can write this as a LS-CPD:

A(u⊗u) = b with u = vec(T )

in which:

A is a binary and sparse matrix

and each entry of b is either zero or a squared MLSV.

[Boussé et al., 2018b]
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By exploiting the sparsity in the Jacobian, the NLS-based method is faster than the
alternating projection method.

α = 1 α = 5 α = 10

Alternating projection method (APM) 0.100 34.4 1747

Construction of A 0.004 1.4 23
Initialization (i.e., one iteration of APM) 0.002 0.4 12
LS-CPD 0.023 15.4 444

Total computation time of LS-CPD 0.029 17.2 479

We report median computation time (in seconds) across 20 experiments for a tensor of
size 10α× 10α× 5α.
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LS-CPDs can be used to solve the blind deconvolution of a constant modulus (CM)
signal.

Consider a single-input-single-output autoregressive system:

∑L
l=0 wl · y [k − l ] = s[k] + n[k], for 1 ≤ k ≤ K .

In matrix form, we have:
YTw = s.

36



The goal of blind deconvolution is to find the filter coefficients using only the measured
output values.

In order to make the problem identifiable, we assume the input signal has constant
modulus (CM), i.e., each sample sk satisfies:

|sk |2 = sk · sk = c , for 1 ≤ k ≤ K

with c the squared constant modulus which is known a priori.

Taking into account all equations, we obtain an LS-CPD:(
Y�Y

)T
(w⊗w) = c · 1K .

[Boussé et al., 2018b]
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LS-CPD enables more accurate results than the naive method and achieves similar
accuracy as OSCMA.

0 30
-40

0

LS-CPD
Naive method

OSCMA

Signal-to-noise ratio (dB)

Relative
error
(dB)

L = 5, K = 100, c = 1, using uniformly distributed coefficients in [0, 1].
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Blind signal separation of constant modulus signals can also be interpreted as a LS-CPD

Consider an instantaneous model with R constant modulus source signals:

Y = H S with |srk |2 = 1 ∀r , k

M × K M × R R × K

Using the same strategy as before, we obtain a LS-CPD with R possible solutions:(
Y�Y

)T
(wr ⊗wr ) = 1K (2)

The well-known Analytical Constant Modulus Algorithm (ACMA) solves (2) as follows:

1. First, find R solutions xr of the linear system while ignoring the structure.

2. Next, find wr by simultaneous diagonalization of Xr for 1 ≤ r ≤ R (∼CPD).

[van der Veen and Paulraj, 1996]
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Large-scale autoregressive system identification can be handled via LS-CPD

Consider an Lth order AR model with Q outputs and one exogenous input:

L∑
l=0

gq[l ]yq[k − l ] = x [k] + n[k] for 1 ≤ k ≤ K

Assuming we have K + L samples, we have the following matrix notation:

L∑
l=0

g(l)TY(l) = xT + nT

Assuming g(l) = b(l)⊗ a(l) and taking the transpose, results into a LS-CPD:

L∑
l=0

Y(l)T
(

b(l)⊗ a(l)
)

= x

[Boussé et al., 2018a]
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