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Improved performance is achieved by
using more data or prior knowledge

"true system" generates data

prior knowledge: properties of the true system
(model class, noise distribution, .. .)

modeling: data + prior knowledge ~» model
objective:

» model = true system
» use the model for filtering, control, . ..



Improved performance using more data
~» consistent estimation

typical 1//# of samples estimation error decay rate

error

# of samples
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This talk is about improved performance
using extra prior knowledge

System identification’s view of prior knowledge
Linear algebra’s view of prior knowledge

Example: ultrasound imaging
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Next

System identification’s view of prior knowledge
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System identification aims to find
"best" model in given model class

given:
» data 2
» model class .#
» distance measure dist(Z, %)

find: model %7, such that

dist(2, B) = min _dist(2, %)
S



The prior knowledge is the
1. model class, 2. distance measure

1. "true system" % belongs to .#

2. dist(2, %) is "small" (++ noise model)



Examples of prior knowledge

1. model class

» input variables — not restricted
» linear time-invariant (LTI), ...

2. distance measures

» misfit («+» measurement errors)
» latency («» process noise)



The more general the model class,
the weaker the prior knowledge

extreme cases
» all variables inputs ~ trivial model (no restriction)
» all variables outputs ~-» autonomous model
» no "memory" (initial conditions) ~- static model
» autonomous static model ~- trivial model (% ={0})

hyper parameters
» number of inputs
» number of initial conditions (order)
» model structure
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The weaker the prior knowledge,
the larger the estimation error

example: noise filtering _
» true system %:

autonomous
LTI of order n
» measurement noise:
y=y+y, ye#
y ~ Normal(0, 62/)
» estimation error:
T e=y-l

error
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Next

Linear algebra’s view of prior knowledge
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Low-rank approximation:
estimation with a rank constraint

given:
» data 7
» mapping . : 2 — D e R™" and r <min(m,n)
» matrix norm || - ||

find: approximation 2 of 2 as a solution of

minimize over 7 ||.7(2) - .7(2)|
subjectto rank (.#(2)) <r
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The prior knowledge is the
1. rank constraint, 2. matrix norm

1. "true data" Z is such that rank (.(2)) < r

2. |#(2)—~#(Z)| is "small"  (++ noise on %)
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Example: Hankel matrix <« LTI model class

2= (y(1),...,y(T)) — time series

Hankel matrix

y(1)  y(2) y(T—L+1)

y(2) y(@) y(T—-L+2)
Z(2)=|Y(3) y(4) y(T—-L+3)

VL) (L) (T

rank constraint r < model complexity < ordern
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Low-rank prior < sparsity prior

low-rank matrix < sparsity of the singular values

example:
» "time domain" dense
» "frequency domain" sparse
(sum of 6 damped sines)
» low-rank property:

rank ((y)) =12

for12<L<T-13
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Response of n-th order autonomous LTI
system is constrained/structured/sparse

belongs to n-dimensional subspace
is linear combination of n signals

is parameterized by n parameters
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Optimal filtering is projection on a model

problem: optimal filtering with given model
» given: 1.noisydatay=y+y
2. model %, suchthaty € 2  (prior knowledge)
» find:  an estimate y of y

solution: project y on 4 (¢o-optimal approximation)

efficient recursive implementation for LTI systems
~» Kalman filter
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What if the model £ is unknown?
use "higher-order" prior: % € .#, with .# given

classical definition of n-sparse signal

» y has nnonzero values
(we don’t know which ones)
» basis: unit vectors

n-th order autonomous LTI system’s response

» y is sum of n complex exponentials
(their frequencies and dampings are unknown)
» basis: damped complex exponentials
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The low-order LTI prior makes
ill-posed problems well-posed

noise filtering
> given: y=y+Yy, y~Normal(0,6%/), and .#
» find: anestimate yof yc ¢ .#

forecasting
> given: "past" samples (y(—t),...,y(0)) and .#
> find: "future" samples (y(1),...,y(t))

missing data estimation
» given: samples y(t), t € Tgven and .4
» find: missing samples y(t), t € Jgiven
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Noise filtering, % autonomous LTI 2nd order
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Heuristic: smooth the data by low-pass filter
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Optimal (Kalman) filtering requires a model
The best (but unrealistic) option is to use 4

22/33



Optimal filtering using identified model P,
with the 2nd order LTI model class prior
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Next

Example: ultrasound imaging
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High-resolution ultrasound imaging
requires data compression

sensor array (64 antennas)

high sampling rate (40MHz)

generates 2.5 GB / second
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Compression techniques based on skipping
samples require missing data estimation

a priori known property of the data:
joint sparsity in a known basis

the signals are band limited by the sensor

the sensor’s bandwidth is a priori known
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Joint-sparsity ~- low-rank

D — T x N data matrix (T samples, N channels)
dj = Cj1 €Xpy, + -+ CjreXp,,, — reduced Fourier basis

D= FC,where Fis T xrand Cis r x N, therefore

rank(D) <r
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The low-rank property allows
compression down to rN samples
®1,...0r a priori known =— F is known
Mmoreover, %,F is orthonormal
compression: transmit the rN coefficients
c—LFTp
N
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Extra prior: C is "close" to rank deficiency

quantify the distance to rank deficiency by

||C|l« = sum of the singular values  (nuclear norm)
sampling operator S(-) — select r'N < rN samples

extra compression using the extra prior

minimize over C || C|«+ o] S(X)— S(FC)||

29/33



This work is in collaboration with
UZ Leuven and VUB ETRO

Miaomiao Zhang (formerly UZL)
Jan D’hooge (UZL)

Colas Schretter (ETRO)

30/33



Incomplete prior by tuning hyper-parameters

order selection (rank estimation)

» Akaike information criterion
» minimum description length

>---

Bayesian methods with parameterized prior

these methods use "hyper-prior knowledge"
hence "no free lunch"”
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The prior knowledge, used in data modeling,
is often implicit, although it’s crucial

1. model class

"classical" prior: _ o
2. noise distribution

low-rank approximation problem

connection to sparse estimation
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Outlook

other types of prior
» nonnegativity

>...

related work

» regularization techniques
» Bayesian methods

>---

how to come up with prior knowledge?
» parameters tuning (hyper-prior)

>---
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