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INTRODUCTION: MRS Acquisition and Purpose

MR Scanner

Spectrum

Frequency domain

FFT

1H, 31P, 
13C, 14N

MRS signals

Free Induction Decay (FID)

Time domain

Diagnosis: Cancer, 

metabolic diseases, 

Alzheimer’s disease
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Metabolite quantification for MR Spectroscopy (MRS)

MRS 
quantification

Metabolite concentrations

Single-voxel 
MRS
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Metabolite quantification for MRS Imaging (MRSI)

Metabolite maps

NAA Myo Cr PCho

Glu Lac Lip1 Lip2

Ala Glc Tau

Multi-voxel 
MRS MRS quantification

using spatial information

Metabolite concentrations = biomarkers of disease
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Introduction- MRSI and water suppression

𝑆 𝑡 = ෍

𝑟=1

𝑅

𝑎𝑟𝑒
𝑗𝜙𝑟𝑒 −𝑑𝑟+𝑗2𝜋𝑓𝑟 𝑡 + 𝜂(𝑡)

Time domain Model𝑆 𝑓 = ෍

𝑟=1

𝑅
𝑎𝑟𝑒

𝑗𝜙𝑟/2𝜋

𝑑𝑟 + 𝑗2𝜋(𝑓 − 𝑓𝑟)
+ 𝜂(𝑓)

Frequency domain Model

HSVD based water suppression

Hankel Tensor + MLSVD

𝑆 = 𝑊𝐻𝑇

Spectra from 

Voxels
Spectra of sources

Source abundancies 

in the grid

Aim: Suppress the large water peak from all voxels
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HSVD based water suppression

• Construct the Hankel matrix H from the time domain signal 𝑆.

• The Hankel matrix H has Vandermonde decomposition.

𝐻 =
1 ⋯ 1
⋮ ⋱ ⋮

𝑧1
𝐿−1 ⋯ 𝑧𝑅

𝐿−1

𝑐1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑐𝑅

1 ⋯ 1
⋮ ⋱ ⋮

𝑧1
𝑀−1 ⋯ 𝑧𝑅

𝑀−1

𝑇

• Estimate the parameters {Z and C} using SVD.

𝐻 = 𝑈𝑆𝑉𝐻 truncate to R, 𝐻𝑅 = 𝑈𝑅𝑆𝑅𝑉𝑅
𝐻

• Use the shift–invariance property to estimate the poles.

Solve   𝑈𝑅
↑ = 𝑈𝑅

↓𝑇 with 𝑇 = 𝑄−1𝑍𝑄 and Z = diag{z1, …, zR}

• Poles are estimated as 𝑧 = 𝑒𝑖𝑔(𝑄−1𝑍𝑄).

𝑎𝑟𝑒
𝑗𝜙𝑟 𝑒 −𝑑𝑟+𝑗2𝜋𝑓𝑟 𝑛𝑡
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HSVD based water suppression

• Calculate the amplitudes ak from estimated poles and measured signal 

using least squares.

• Estimate the frequency and damping factor from each pole.

• Estimate the water component using only the poles and amplitudes 

whose frequencies are outside the region of interest (0.25-4.2 ppm).

• Finally, suppress the water component by subtracting its estimate from 

the measured signal.

• The disadvantage of this method is that we have to repeat the 

procedure for all voxels in the MRSI grid. 

• Neighboring voxels have similar water sources with different complex 

amplitudes Exploit using tensor approaches.
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Hankel-tensor based water suppression- MLSVD

• Each individual component can be well approximated by complex-

damped exponentials.

• For each voxel in the MRSI, construct a Hankel matrix from the free 

inducation decay (FID) signal but now stack these to form a tensor.

• Parameters of the complex-damped exponentials can be obtained 

using MLSVD

H =A ×1 𝑈
(1) ×2 𝑈

(2) ×3 𝑈
(3)

Bharath, H. N., Debals, O., Sima, D. M., Himmelreich, U., De Lathauwer, L., and Van Huffel, S. Tensor based method for 

residual water suppression in 1H magnetic resonance spectroscopic imaging. in IEEE Transactions on Biomedical 

Engineering, 2018.
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Hankel based water suppression- MLSVD

• The frequency and damping of individual sources can be obtained using 

shift-invariance property and eigen-value decomposition of mode-1 factor 

matrix 𝑈(1).

• Water sources are estimated by reconstructing those exponentials outside 

the region of interest (0.25-4.2 ppm). 

• The total water component (including amplitudes) is estimated by fitting 

those water exponentials to the measured signal using least-squares.

• Finally, the water component is suppressed by subtracting this estimated 

water signal from the measured MRSI signal.
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Löwner based water suppression

• For each voxel  in the MRSI signal construct a Löwner

matrix from truncated spectrum 𝑆𝑤𝑟. 

𝐿 =

𝑆𝑤𝑟 𝑥1 − 𝑆𝑤𝑟 𝑦1
𝑥1 − 𝑦1

⋯
𝑆𝑤𝑟 𝑥1 − 𝑆𝑤𝑟 𝑦𝐽

𝑥1 − 𝑦𝐽
⋮ ⋱ ⋮

𝑆𝑤𝑟 𝑥𝐼 − 𝑆𝑤𝑟 𝑦1
𝑥𝐼 − 𝑦1

⋯
𝑆𝑤𝑟 𝑥𝐼 − 𝑆𝑤𝑟 𝑦𝐽

𝑥𝐼 − 𝑦𝐽

Using interleaved partitioning in two point sets X and Y:

X = {𝑥1, 𝑥2…}{1,3,…..} and Y = {𝑦1, 𝑦2…}  {2,4,…..}

• If a Löwner matrix 𝐿 is constructed from a rational 

function of degree R, the matrix 𝐿 has rank R. 

𝑆 𝑓 = ෍

𝑟=1

𝑅
𝑎𝑟𝑒

𝑗𝜙𝑟/2𝜋

𝑑𝑟 + 𝑗2𝜋(𝑓 − 𝑓𝑟)
+ 𝜂(𝑓)
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Löwner based water suppression- CPD

• For each voxel in the MRSI signal construct a Löwner

matrix from the spectra and stack these to form a tensor.

• Each individual component can be well approximated by a 

degree-1 rational function, hence BSS reduces to CPD.

L𝑠 ≈ ෍

𝑟=1

𝑅

𝑎𝑟 ⊗𝑏𝑟 ⊗ℎ𝑟 ,

Bharath, H. N., Debals, O., Sima, D. M., Himmelreich, U., De Lathauwer, L., and Van Huffel, S. Tensor based method for 

residual water suppression in 1H magnetic resonance spectroscopic imaging. in IEEE Transactions on Biomedical 

Engineering, 2018.

L𝑅 = 𝑎𝑟𝑏𝑟
𝑇
𝑟
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Löwner based water suppression

• Parameters 𝑎𝑘1, 𝑎𝑘2 and 𝑏𝑘 are estimated using least squares from A(:,k) 

and B(:,k).

• Water component is estimated using only the sources and amplitudes that 

are outside the region of interest (0.25-4.2 ppm).

• Finally the water component is suppressed by subtracting the estimated 

water signal from the measured signal.

𝐴 : , 𝑟 =

𝑎𝑟1
(𝑖𝑥1+ 𝑏𝑟)…

𝑎𝑘1
(𝑖𝑥𝐼+ 𝑏𝑟)

, 𝐵(: , 𝑘)𝑇=
𝑎𝑟2

(𝑖𝑦1+ 𝑏𝑟)
. . .

𝑎𝑟2
(𝑖𝑦𝐽+ 𝑏𝑟)

𝐿𝑟 = 𝐴(: , 𝑟)𝐵(: , 𝑟)𝑇

𝑎𝑟 = 𝑎𝑟1 ∗ 𝑎𝑟2
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Löwner based water suppression- Baseline

• Problem: In some voxels, water suppression will result in a baseline at 

the edges of the spectra.

• Solution: Model the baseline using polynomial function and add it to 

the source matrix 𝑊.

𝑊𝑝𝑜𝑙𝑦 =

𝑤11 ⋯ 𝑤1𝑅

⋮ ⋱ ⋮
𝑤𝑁1 ⋯ 𝑤𝑁𝑅

1 ⋯ 𝑓1
𝑑

⋮ ⋱ ⋮
1 ⋯ 𝑓𝑁

𝑑
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Hankel based water suppression- Results

Simulation: 

• Metabolite spectra generated using in-vitro signals.

• Residual water generated using scaled water reference signal measured  in-vivo.

Box-plot of errors on simulated MRSI data
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Hankel based water suppression- Results

Box-plot displays differences in variance in suppressed region of the in-vivo MRSI data

• Water suppression methods are tested on 28 in-vivo measured MRSI signals.



Contents Overview

1. Introduction

▪ Magnetic Resonance Spectroscopic imaging

2. Residual Water Suppression

▪ Hankel-tensor based water suppression

▪ Löwner-tensor based water suppression

3. Tumor tissue type differentiation
▪ From MRSI

▪ From MP-MRI

4. MRSI tumor voxel classification

5. Tumor segmentation from MP-MRI

10-9-2018191. 2. 3. 4. 5.



10-9-2018201. 2. 3. 4. 5.

Gliomas- Pathologic tissue spectrum

NAACho

Lip

ppm

Normal

Tumor

Necrosis
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Unsupervised Brain Tumor Diagnosis using NMF 

spatial distribution of tissue types:

normal tissue active tumor necrosis

Y = matrix of spectra, Y  W H

min || Y - W H ||   
such that W  0, H  0

W = tissue-specific spectral patterns:

non-negative matrix 
factorization

MRSI

normal

tumor

necrosis

glioblastoma multiforme patient
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Non-negative matrix factorization (NMF)

▪ Non-negativity constraint: Xi,j, Wi,j, Hi,j  0, i,j

▪ Columns of W ~ sources (tissue signatures)

▪ Rows of H       ~ source abundances (tissue weights)

▪ Unsupervised: directly applicable patient-by-patient, 

but tissue classes not a priori known   



• Use rank-(𝐿𝑟 , 𝐿𝑟 , 1) block term decomposition to estimate tissue specific 

spectra and their corresponding distribution.

• Tissue distribution may not be of low rank.  

• Difficult to estimate the rank 𝐿𝑟 for each term. 

10-9-201823

Spatial MRSI tensor

1. 2. 3. 4. 5.
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Tissue type differentiation from MRSI

• Reduces the length of spectra without losing vital information required for 

tumor tissue type differentiation.

• This preprocessing gives more weight to the peaks and makes the signal 

smoother. 

Bharath, H. N., Sima, D. M., Sauwen, N., Himmelreich, U., Lathauwer, L. D., and Van Huffel, S Nonnegative canonical 

polyadic decomposition for tissue-type differentiation in gliomas. IEEE Journal of Biomedical and Health Informatics 

21, 4 (July 2017), 1124–1132
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Tissue type differentiation from MRSI- XXT tensor

• Construct a 3-D tensor by stacking XXT from each voxel.

• MRSI tensor couples the peaks in the spectra because of 

the XXT in the frontal slices.
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Tissue type differentiation from MRSI: NCPD

• Non-negative constraint is applied on all 3-modes.

• To maintain symmetry in frontal slices common factor (S) is used

in both mode 1 and mode 2.

𝑇 ≈ [𝑆, 𝑆, 𝐻] = ෍

𝑟=1

𝐾

𝑆 : , 𝑟 о 𝑆 : , 𝑟 о 𝐻(: , 𝑟)

• Non-negative CPD is performed in Tensorlab toolbox using

structured data fusion.
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l1 Regularized NCPD

• Here, we assume that spectra corresponding to each voxel belongs to a 

particular tissue type, therefore the factor matrix H will be sparse.

• Non-negative CPD with l1 regularization on the abundances H.

[𝑆∗, 𝐻∗] = min
𝑆,𝐻

𝑇 − ෍

𝑟=1

𝐾

𝑆 : , 𝑟 о 𝑆 : , 𝑟 о 𝐻(: , 𝑟),

2

2

+𝜆 𝑉𝑒𝑐 𝐻 1

where λ controls the sparsity in H. 

• Use more sources (higher rank) to accommodate

for artifacts and variations within tissue types. 

• Original source spectra are recovered using least squares:

𝑆 = (𝐻†𝑌𝑇)𝑇

𝐻† is the pseudo-inverse of H obtained from

Non-negative CPD.
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Initialization
• Take SVD of the complex spectra, 𝑌 = 𝑈Σ𝑉𝐻.

• Construct the reduced spectrum from R dominant singular vectors. Use 

this to initialize S in the NCPD.

• H in NCPD is initialized using least squares, 𝐻𝑖𝑛𝑖𝑡 = (𝑆𝑖𝑛𝑖𝑡
† 𝐴)𝑇.  
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Rank estimation

• Estimate the covariance matrix from the reduced spectra data matrix, A.

𝐶 = 𝐸 𝐴 − 𝐸[𝐴] 𝐴 − 𝐸[𝐴] 𝑇

• The number of sources is estimated as the minimum number R such 

that the cumulative sum of eigenvalues represents at least 99% of the 

total energy.

𝑅∗ = argmin
𝑅

σ𝑖=1
𝑖=𝑅 𝜆𝑖

σ𝑖=1
𝑖=𝐾 𝜆𝑖

≥ 0.99

• Incorporate prior knowledge about the maximum number of sources 

(R<=8).
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Tissue type differentiation from MRSI- Results
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Tissue type differentiation from MRSI- Results
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Tissue type differentiation from MultiParametric (MP)-MRI*

Conventional MRI PWI

DWI MRSI

Edema

Active 

tumor

Necrosis

Bharath, H. N., Sauwen, N., Sima, D.M., Himmelreich, U., De Lathauwer, L., and Van Huffel, S. Canonical polyadic 

decomposition for tissue type differentiation using multi-parametric MRI in high-grade gliomas. European Signal 

Processing Conference (EUSIPCO) 2016, Budapest, Aug. 2016 (pp. 547-551).
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Tissue type differentiation from MP-MRI:-XXT tensor
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Tissue type differentiation from MP-MRI:- CPD

• To maintain symmetry in frontal slices common factor (S)

is used in both mode-1 and mode-2.

• Non-negative constraint is applied on mode-3, H.

• Also, l1 regularization in applied on the abundances H.

• Solve using structured data fusion method in Tensorlab.

𝑆∗, 𝐻∗ = arg min
𝑆,𝐻≥0

T − ෍

𝑖=1

𝑅

)𝑆 : , 𝑖 𝑜 𝑆 : , 𝑖 𝑜 𝐻(: , 𝑖

2

2

+ 𝜆 )𝑉𝑒𝑐(𝐻 1
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Results:
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Based on manual segmentation by radiologist

(for pathological tissue types)

1) Dice-scores* (based on H)
A B

Segmentation accuracy

* Dice, Lee R. "Measures of the Amount of Ecologic Association Between Species". Ecology, 1945; 26 (3): 297–302.

2* ( )

( ) ( )

area A B
Dice

area A area B





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Tissue type differentiation from MP-MRI:- results

Constrained CPD-l1 hNMF
Dice

Tumor

Dice

Core

Tumor source

Correlation

Dice

Tumor

Dice

Core

Tumor source

Correlation

Mean 0.83 0.87 0.95 0.78 0.85 0.81

Standard 

deviation 0.07 0.1 0.05 0.09 0.13 0.19
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Tumor classification: CNN

• Convolutional neural network is a class of deep neural 

networks. Exploit spatial locality with shared weights.

• Three main layers

• Convolutional layer: 

• Performs 2-D convolution

• ReLU: 

• Applies non-linear activation function.

• Pool:

• Values over a window are reduced to a single value. 

Fig*

* https://en.wikipedia.org/wiki/Convolutional_neural_network
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Convolutional Neural Network

Weights - 4D tensor (𝐼 × 𝐽 × 𝑀 × 𝑁)

𝐼, 𝐽 filter size.

𝑀- input dimension, 𝑁- output dimension.
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Tumor classification: CNN

• CNN Architecture Input
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• Apply MLSVD to convolution tensor T ∈ 3 × 3 × 𝐼 × 𝐽.

Tumor classification: CNN

T = S ×1 𝐴1 ×2 𝐴2 ×3 𝐴3 ×4 𝐴4

T ≈ S1 ×3
መ𝐴3 ×4

መ𝐴4 , S1 ≈ ෡S ×1 𝐴1 ×2 𝐴2

෡S = 𝑆(1: 𝐼, 1: 𝐽, 1: 𝐾∗, 1: 𝐿∗), መ𝐴3 = 𝐴3 : , 1: 𝐾∗ , መ𝐴4 = 𝐴4 : , 1: 𝐿∗ , 𝐾∗ < 𝐾 , 𝐿∗ < 𝐿

* Yunpeng, C., Xiaojie, J., Bingyi, K., Jiashi, F., and Shuicheng, Y. Sharing Residual Units Through Collective Tensor 

Factorization in Deep Neural Networks. arXiv preprint arXiv:1703.02180 (2017).

*



10-9-2018431. 2. 3. 4. 5.

Tumor classification: CNN

• First train the CNN for 10 epochs.

• Apply low-rank regularization to all the convolution layers except 

the first one.

• Reduce the dimension in the input and output mode such that 

the truncated tensor retains 80% of the variance in the 

respective mode.

• Replace convolution layers with low rank model and initialize the 

weights with truncated tensor and factor matrix.

• Train the low rank-rank CNN  model for 40 more epochs.

• CNN design and training is performed in MatConvNet
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Tumor classification: CNN

• Given a signal S evaluated at points N = {n1, n2,…..nN}, 

Loewner matrix is defined as 

𝐿 =

𝑆 𝑥1 −𝑆 𝑦1

𝑥1−𝑦1
⋯

𝑆 𝑥1 −𝑆 𝑦𝐽

𝑥1−𝑦𝐽

⋮ ⋱ ⋮
𝑆 𝑥𝐼 −𝑆 𝑦1

𝑥𝐼−𝑦1
⋯

𝑆 𝑥𝐼 −𝑆 𝑦𝐽

𝑥𝐼−𝑦𝐽

With X = {n1, n3,…..} and Y = {n2, n4,…..}

loewnerize
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Tumor classification: Random forest 

• The reduced spectra are used as features.

• Construct 200 tree random forest classifier

with three classes: tumor, normal and bad.

• Class imbalance:

• Tumor class is given more weight compared to others.

• Leave-one-out cross-validation

• 17 patients (28 MRSI dataset).

• 5904 voxels in total.
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Results

Tumor sensitivity specificity precision F1 score

NCPD 81.01% 87.96% 70.36% 0.7437

Random forest 76.89% 94.46% 80.76% 0.7739

CNN 81.58% 94.22% 82.70% 0.8089

CNN + tensor 

regularization

82.90% 93.18% 81.06% 0.8087

Normal sensitivity Specificity precision F1 score

NCPD 71.69% 86.06% 63.02% 0.5851

Random forest 84.15% 94.27% 84.08% 0.7702

CNN 87.39% 92.96% 77.76% 0.7862

CNN + tensor 

regularization

85.85% 93.91% 78.86% 0.7835
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Multi-Parametric (MP) MRI: Tumor segmentation

T2 FLAIR T1 T1c Expert

Segmentation

Bharath, H. N., Colleman, S., Sima, D.M., Van Huffel, S. (2018) Tumor Segmentation from Multimodal MRI Using Random 

Forest with Superpixel and Tensor Based Feature Extraction. In: Crimi A., Bakas S., Kuijf H., Menze B., Reyes M. (eds) 

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer 

Science, vol 10670. Springer, Cham.



• Each image is divided into smaller patches which are better aligned with 

intensity edges, called superpixels.

• The tissue assignment is done on superpixel-level instead of individual pixel, 

which helps to reduce computational cost and improve spatial smoothness.

10-9-201849

Super-pixel

1. 2. 3. 4. 5.
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MP-MRI: RF based tumor segmentation

Others

• Local histograms

• Intensities of the modalities

• Co-variance between 

modalities

• Average intensities

• Range values

• Standard deviation

H
is

t
le

n
g
th

Modalities



• Two-stage Random forest classifier

• First stage: whole tumor segmentation

• Second stage: sub-region segmentation from the whole tumor

• Random forest classifier

• 100 trees for first stage, 200 trees for second stage

10-9-201851

MP-MRI: RF based tumor segmentation

1. 2. 3. 4. 5.
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Tumor Segmentation from MP-MRI: Processing

• Pre-processing:

• Histogram matching algorithm was applied to all the individual MRI

data. Histogram from one of the patients was chosen as reference

template histogram.

• Each image data was scaled between 0-1.

• Background is removed using Otsu's method.

• Only the slices where tumor was present was considered for

training.

• Post-processing:

• Image-open followed by image-close operation is performed on the

segmented image.
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Tumor Segmentation from MP-MRI: Results

• Tested on BRATS 2017* validation dataset.

• Tested on 46 patients

• Average dice-score of 83.3% with standard deviation of 

11.86% for total tumor.

*Menze et al., The Multimodal Brain TumorImage Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 
2015

Blue:-Expert; Green:-MLSVD segmentation;

Cyan:- Overlap between expert and MLSVD
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Results: High Grade Glioma

• 210 High Grade Glioma patients 

from BRATS 2017 dataset.

• Training – 70% (147)

• Testing  --- 30%   (63)

• Dice score

• Enhanced tumor (Brown) -

76.1%

• Tumor core (Brown + blue) -

78.3%

• Whole Tumor (Brown + blue 

+ green) - 83.3%



• BRATS 2017 Validation dataset: 46 patients

• BRATS 2017 test dataset: 146 patients
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Results:

1. 2. 3. 4. 5.

Tumor Dice ET Dice WT Dice TC

Mean 61.25% 79.28% 67.34%

Std 30.13% 12.17% 22.15%

Median 74.19% 84.10% 72.91%

Tumor Dice ET Dice WT Dice TC

Mean 50.32% 77.01% 61.05%

Std 30.54% 18.71% 29.54%

Median 63.76% 84.00% 74.16%



• Tensor based blind source separation methods has better performance than 

their matrix based counterpart.

• Residual water suppression 

• Tissue type differentiation.

• Tensor tools can be used in supervised algorithms

• Comparable results

• Needs further exploration.   
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Conclusion

1. 2. 3. 4. 5.
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Thank you!

www.esat.kuleuven.be/stadius/biomed
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