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Matrix

» Matrix (second-order tensor) can be used to describe the
relationship between objects, and objects with different

attributes:
O O | --- On A1 Ay | - | Anm
Op | a11 | a2 | --- | ain O | a1 | a1p | - | ai,m
Oy | a1 | a2 | -+ | @ O | ax1 | azp | - | ao,m
On an,1 an,2 ce an,n On an,1 an,2 ce an,m

Examples: (left) a similarity matrix, an image, a Google
matrix; (right) a gene expression data, multivariate data,
terms and documents.

» large data (n is large); high-dimensional data (m is large)



Multiple Relations Tensor

» Tensor can be used to describe the multiple relationships
between objects. A tensor is a multidimensional array. Here a
three-way array (third-order tensor) is used:
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> p relationships among n objects



Application: Information Retrieval

» Web information retrieval is significantly more challenging
than that based on web hyperlink structure

» One main difference is the multiple links based on the other
features (text, images, etc)

» Example: 100,000 webpages from .GOV Web collection in
2002 TREC and 50 topic distillation topics in TREC 2003
Web track as queries

» Multiple links among webpages via different anchor texts

» 39,255 anchor terms (multiple relations), and 479,122 links
with these anchor terms among the 100,000 webpages



Application: Networks

» In a social network where objects are connected via multiple
relations, via sharing, comments, stories, photos, tags,
keywords, topics, etc

» In a publication network where the interactions among items
in three entities: author, keyword and paper
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» A tensor: the interactions among items in three
dimensions/entities: author, keyword and paper; A matrix:
the interactions between items in two dimensions/entities:
concept and paper



Tensor Decomposition

CANDECOMP /PARAFAC Decomposition:
r . .
X:Z)\ia’7l®...®a”m
i=1

The minimal value of r is called the rank of A.



Tensor Decomposition

Tucker Decomposition:

X=GxA;1 xAr - xAp
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It can be obtained by using singular value decomposition to each
unfolded matrix X; from X'. The Tucker rank is
(rank(X1), rank(Xz), -+ ,rank(Xm)) = (n, r2, -+ rm)-



Low-dimensional Structure

Data in many real applications exhibit low-dimensional structures
due to local regularities, global symmetries, repetitive patterns,
redundant sampling, ... (low-dimensional structure — low-rank
data matrices)



Example

Customer/Item | | | Il [ Il [ IV
A 51117 |7
B 7121317
C P71 42
D 1?27?77

For example (Netflix Challenge 2009), it is about 0.5 million users
and about 18,000 movies

Matrix Completion

m)én rank(X) subject to Pq(X) = Pq(M)



Example

Matrix RPCA
mxin rank(X) + A||[E|lp subject to X+ E=M



Example

Robust Matrix Completion

mxin rank(X) + A||[E|lo subject to Pq(X + E) = Pqo(M)



Low Rank Matrix Recovery

» Matrix Completion
mxin rank(X) subject to Pq(X) = Pq(M)
» Matrix RPCA

m)én rank(X) + A||[E[jo subject to M =X+E

» Robust Matrix Completion

m)én rank(X) + A||[E|jo  subject to Pq(M) = Pq(X + E)



Low Rank Matrix Recovery

> Matrix Completion
m)én |X][« subject to Pq(X) = Pq(M)
> Matrix RPCA
mxin IIX]|« + A||E||1 subject to M =X+E
» Robust Matrix Completion

mxin |IX|[« + A[E|]|1 subject to Pq(M) = Pqo(X + E)

Nuclear norm || - ||«: sum of singular values (convex envelop of
rank)



Low Rank Matrix Recovery Results

» (RPCA) Candes, E. J., Li, X., Ma, Y., and Wright, J. Journal
of the ACM, 58(3):173, 2011.

» (Matrix Completion) Recht, B. Journal of Machine Learning
Research, 12(4):34133430, 2011.

» (Matrix Completion) Chen, Y. IEEE Transactions on
Information Theory, 61(5):29092923, 2013.



Low Rank Tensor Recovery

Data are usually in multi-dimensional array.

Mode 1 (spatial column)
Mode 1 (spatial column)

Mode 2 (spatial row) Mode 2 (spatial row)

“Vectorization” probably break the inherent structures and
correlations in the original data.



Low Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



Low Rank Tensor Recovery

» CP decomposition/rank cannot be computed efficiently
» Matrix rank can be replaced by matrix nuclear norm (the sum
of singular values), it is a convex envelope

» Replace Tucker rank by the sum of nuclear norms of unfolding
tensors, interdependent matrix trace norm is involved

» The use of the sum of nuclear norms of unfolding matrices of
a tensor may be challenged since it is suboptimall

» The tensor trace norm (the average of trace norms of
unfolding matrices) is not a tight convex relaxation of the
tensor rank (the average rank of unfolding matrices) 2

1C. My, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In ICML, pages 7381, 2014.

2B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor
completion. In Adv. Neural Inf. Process. Syst., pages 29672975, 2013.



t-SVD Decomposition

A third-order tensor of size n; X n» X n3 can be viewed as an
n1 X ny matrix of tubes which lie in the third-dimension. [Kilmer,

M. E. and Martin, C. D. Linear Algebra & Its Applications,
435(3):641658, 2011]



t-SVD Decomposition

Definition: The t-product A x B of A € R™M*™*"s and
B € Rm™*mxm is 3 tensor C € RM*™*Ms whose (/, j)th tube is
given by

(i) ZA ) Bk, j, ),

where * denotes the circular convolution between two tubes of
same size.

The tube at (/, k) position in A convolutes with the tube at (k,;)
position in B. Both have sizes n3. Put all the correlations at (i, )
position in C.

The multiplication of between the scalars is replaced by circular
convolution between the tubes.



t-SVD Decomposition

Definition: The identity tensor Z € R"*"*" is defined to be a
tensor whose first frontal slice Z(1) is the n x n identity matrix and
whose other frontal slices ZU),j = 2, ..., n3 are zero matrices.

Definition: The conjugate transpose of a tensor A € RM>*M™%M jg
the tensor A" € R™*Mxns ohtained by conjugate transposing
each of the frontal slice and then reversing the order of transposed
frontal slices 2 through ns, i.e.,

()" = (a0)",

(AH)(i) - (A<"3+2—">)H, i=2.... .



t-SVD Decomposition

Definition: A tensor @ € R"*"*M is orthogonal if it satisfies
Q"xQ0=0x0"=1,

where 7 is the identity tensor of size n X n X n3.

Definition: A tensor A is called f-diagonal if each frontal slice A()
is a diagonal matrix.



t-SVD Decomposition

For A € RM*MXn the t-SVD of A is given by
A=UxS*VH,

where U € RMXMXM and ) € RM™*MXM gre orthogonal tensors,
and § € RM*mxMm ig 3 f-diagonal tensor, respectively. The entries
in S are called the singular tubes of A.



t-SVD Decomposition

The tensor tubal-rank, denoted as rank:(.A), is defined as the
number of nonzero singular tubes of S, where S comes from the

t-SVD of A, i.e,
rank;(A) = #{i : S(i,i,:) # 0}.

It can be shown that it is equal to max; rank(A()) where A() is
the i-th slice of A and A represents a third-order tensor obtained
by taking the Discrete Fourier Transform (DFT) of all the tubes

along the third dimension of A.

Definition: The tubal nuclear norm of a tensor A € RM*M2Xn3
denoted as ||.A||Tnn, is the nuclear norm of all the frontal slices of

A.



Low Tubal Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



Low Tubal Rank Tensor Recovery (Relaxation)

» Tensor Completion
m}én |X[[Tan subject to  Pq(X) = Pq(M)
» Tensor Robust PCA
m)in X Tnn + A€l subject to M =X+ &
» Robust Tensor Completion
m)én 1 X]Tan + AllE]l1 subject to  Po(M) = Po(X + &)

Can we recover low-tubal-rank tensor from partial and grossly
corrupted observations exactly ?



Tensor Incoherence Conditions

Assume that rank:(Lo) = r and its t-SVD Lo =U * S+ V. Ly is
said to satisfy the tensor incoherence conditions with parameter
w>0if

max |U « &]|F < H,
=1, .m n
r

max [V el <, /2
:17"'7'72 n2

and (joint incoherence condition)

ur
n1n2n3'

U = Vo <



Tensor Incoherence Conditions

The column basis, denoted as &, is a tensor of size ny x 1 X n3
with its (7,1, 1)th entry equaling to 1 and the rest equaling to 0.
The tube basis, denoted as &y, is a tensor of size 1 x 1 X n3 with
its (1,1, k)th entry equaling to 1 and the rest equaling to 0.



Low Rank Tensor Recovery

Theorem

Suppose Ly € RM*mXM3 opeys tensor incoherence conditions, and
the observation set ) is uniformly distributed among all sets of
cardinality m = pninan3. Also suppose that each observed entry is
independently corrupted with probability ~v. Then, there exist
universal constants c1, cp > 0 such that with probability at least

1 — c1(n(1yn3) =2, the recovery of Lo with A\ =1/, /ph1)m3 is
exact, provided that

Cr n(2)

r<—> ——  and <c
p(log(n1yns))? T=9

where ¢, and ¢, are two positive constants.

nay = max{ny, n2} and ne) = min{ny, n2}



Low Rank Tensor Recovery

Theorem
(Tensor Completion): Suppose Ly € R™*™XM obeys tensor
incoherence conditions, and m entries of Lo are observed with
locations sampled uniformly at random, then there exist universal
constants ¢y, c1, ¢ > 0 such that if
2

m > copurn(yynz(log(n(1ynz))”,
Lo Is the unique minimizer to the convex optimization problem
with probability at east 1 — c1(n(yn3)~ .



Low Rank Tensor Recovery

The detailed theoretical and numerical results can be found in
https://arxiv.org/abs/1708.00601



Transform-based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We generalize tensor singular value decomposition by using other
unitary transform matrices instead of discrete Fourier/cosine
transform matrix.

The motivation is that a lower transformed tubal tensor rank may
be obtained by using other unitary transform matrices than that by
using discrete Fourier/cosine transform matrix, and therefore this
would be more effective for robust tensor completion.



Transform-based t-SVD

The detailed theoretical and numerical results can be found in
http://www.math.hkbu.edu.hk/~mng/RTC.pdf



Summary

» More and more applications involving tensor data

» Theory and Algorithms to be studied



